The effects of methanesulfonic acid on seed germination and morphophysiological changes in the seedlings of two Colobanthus species

Justyna Koc, Janusz Wasilewski, Piotr Androsiuk, Wioleta Kellmann-Sopyła, Katarzyna Joanna Chwedorzewska, Irena Giełwanowska

Abstract


The effect of methanesulfonic acid (MSA) on the morphophysiology and biochemistry of the subantarctic species Colobanthus apetalus and the Antarctic species Colobanthus quitensis was examined. We evaluated the effects of various concentrations of MSA on the germination capacity and germination rate of seeds, seedling growth, chlorophyll fluorescence in cotyledons, and the proline content of seedlings under laboratory conditions at temperatures of 20°C (day) and 10°C (night) with a 12/12 h photoperiod. The examined C. apetalus seeds were grown in a greenhouse, and C. quitensis seeds were harvested in Antarctica and grown in a greenhouse (Olsztyn, Poland). The seeds of C. apetalus were characterized by the highest germination capacity and the highest germination rate, whereas C. quitensis seedlings were characterized by the most favorable growth and development. Only the highest concentrations of MSA decreased the intensity of chlorophyll fluorescence in the cotyledons of both Colobanthus species. The proline content of C. apetalus and C. quitensis seedlings increased significantly after MSA treatments. The results of this study clearly indicated that Colobanthus quitensis is more resistant to chemical stress induced by MSA. This is a first study to investigate the influence of MSA on the morphophysiology and biochemistry of higher plants.

Keywords


Colobanthus apetalus; Colobanthus quitensis; sub-Antarctic; Antarctica; methanesulfonic acid; environmental stress

Full Text:

PDF

References


Chwedorzewska KJ. Terrestrial Antarctic ecosystems at the changing world – an overview. Pol Polar Res. 2009;30(3):263–276. https://doi.org/10.4202/ppres.2009.13

Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ. Ecophysiology of Antarctic vascular plants. Physiol Plant. 2002;115(4):479–486. https://doi.org/10.1034/j.1399-3054.2002.1150401.x

Znój A, Chwedorzewska KJ, Androsiuk P, Cuba-Diaz M, Giełwanowska I, Koc J, et al. Rapid environmental changes in the Western Antarctic peninsula region due to climate change and human activity. Appl Ecol Environ Res. 2018;15(4):525–539. https://doi.org/10.15666/aeer/1504_525539

Bravo LA, Griffith M. Characterization of antifreeze activity in Antarctic plants. J Exp Bot. 2005;56(414):1189–1196. https://doi.org/10.1093/jxb/eri112

Wódkiewicz M, Chwedorzewska KJ, Bednarek PT, Znój A, Galera H. How much of the invader’s genetic variability can slip between our fingers? A case study of secondary dispersal of Poa annua on King George Island (Antarctica). Ecol Evol. 2018;8(1):592–600. https://doi.org/10.1002/ece3.3675

Chwedorzewska KJ, Giełwanowska I, Olech M, Molina-Montenegro MA, Wódkiewicz M, Galera H. Poa annua L. in the maritime-Antarctic – an overview. Polar Rec. 2015;51:637–643. https://doi.org/10.1017/S0032247414000916

Androsiuk P, Jastrzębski PJ, Paukszto Ł, Okorski A, Pszczółkowska A, Chwedorzewska KJ, et al. Characterization of the complete chloroplast genome of Colobanthus apetalus (Labill.) Druce and comparisons with related species. PeerJ. 2018; 6:e4723. https://doi.org/10.7717/peerj.4723

West JG, Cowley KJ. Colobanthus. In: Wals NG, Entwisle TJ, editors. Flora of Victoria. Dicotyledons Winteraceae to Myrtaceae. Melbourne: Inkata Press; 1996.

Lichtenthaler HK. Vegetation stress: an introduction to the stress concept in plants. J Plant Physiol. 1996;148(1–2):4–14. https://doi.org/10.1016/S0176-1617(96)80287-2

Kellmann-Sopyła W, Lahuta LB, Giełwanowska I, Górecki RJ. Soluble carbohydrates in developing and mature diaspores of polar Caryophyllaceae and Poaceae. Acta Physiol Plant. 2015;37(6):118. https://doi.org/10.1007/s11738-015-1866-z

Tapia-Valdebenito D, Ramirez LAB, Arce-Johnson P, Gutiérrez-Moraga A. Salt tolerance traits in Deschampsia antarctica Desv. Antarct Sci. 2016;28(6):462–472. https://doi.org/10.1017/S0954102016000249

Xiong FS, Ruhland CT, Day TA. Photosynthetic temperature response of the Antarctic vascular plants Colobanthus quitensis and Deschampsia antarctica. Physiol Plant. 1999;106(3):276–286. https://doi.org/10.1034/j.1399-3054.1999.106304.x

Bravo LA, Saavedra-Mella FA, Vera F, Guerra A, Cavieres LA, Ivanov AG, et al. Effect of cold acclimation on the photosynthetic performance of two ecotypes of Colobanthus quitensis (Kunth) Bartl. J Exp Bot. 2007;58(13):3581–3590. https://doi.org/10.1093/jxb/erm206

Bascuñán-Godoy L, García-Plazaola JI, Bravo LA, Corcuera LJ. Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and maritime Antarctic. Polar Biol. 2010;33(7):885–896. https://doi.org/10.1007/s00300-010-0765-4

Pastorczyk M, Giełwanowska I, Lahuta LB. Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling. Acta Physiol Plant. 2014;36(7):1771–1780. https://doi.org/10.1007/s11738-014-1551-7

Fuentes-Lillo E, Cuba-Díaz M, Rifo S. Morpho-physiological response of Colobanthus quitensis and Juncus bufonius under different simulations of climate change. Polar Sci. 2017;11:11–18. https://doi.org/10.1016/j.polar.2016.11.003

Cuba-Díaz M, Marín C, Castel K, Machuca Á, Rifo S. Effect of copper (II) ions on morpho-physiological and biochemical variables in Colobanthus quitensis. Journal of Soil Science and Plant Nutrition. 2017;17(2):429–440. https://doi.org/10.4067/S0718-95162017005000031

Androsiuk P, Chwedorzewska K, Szandar K, Giełwanowska I. Genetic variability of Colobanthus quitensis from King George Island (Antarctica). Pol Polar Res. 2015;36:281–295. https://doi.org/10.1515/popore-2015-0017

Kellmann-Sopyła W, Koc J, Górecki RJ, Domaciuk M, Giełwanowska I. Development of generative structures of polar Caryophyllaceae plants: the Arctic Cerastium alpinum and Silene involucrata, and the Antarctic Colobanthus quitensis. Pol Polar Res. 2017;3(1):83–104. https://doi.org/10.1515/popore-2017-0001

Rankin AM, Wolff EW. A year long record of size segregated aerosol composition at Halley, Antarctica. J Geophys Res Atmos. 2003;108(D24):4775. https://doi.org/10.1029/2003JD003993

Clegg SL, Brimblecombe P. The solubility of methanesulphonic acid and its implications for atmospheric chemistry. Environ Technol. 1985;6(1–11):269–278. https://doi.org/10.1080/09593338509384344

Brimblecombe P. The Global sulfur cycle. In: Schlesinger WH, editor. Biogeochemistry. Amsterdam: Elsevier; 2005. p. 645–682.

Murrell JC, Higgins T, Kelly DP. Bacterial metabolism of methanesulfonic acid. In: Murrell JC, Kelly DP, editors. Microbiology of atmospheric trace gases. Berlin: Springer; 1996. p. 243–253. (NATO ASI Series; vol 39). https://doi.org/10.1007/978-3-642-61096-7_14

Patai S. The chemistry of sulphonic acids. New York, NY: Wiley; 1991.

Dawson ML, Varner ME, Perraud V, Ezell MJ, Gerber RB, Finlayson-Pitts BJ. Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations. Proc Natl Acad Sci USA. 2012;109(46):18719–18724. https://doi.org/10.1073/pnas.1211878109

Bork N, Elm J, Olenius T, Vehkamäki H. Methane sulfonic acid-enhanced formation of molecular clusters of sulfuric acid and dimethyl amine. Atmos Chem Phys. 2014;14(22):12023–12030. https://doi.org/10.5194/acp-14-12023-2014

Becagli S, Castellano E, Cerri O, Curran M, Frezzotti M, Marino F, et al. Methanesulphonic acid (MSA) stratigraphy from a Talos Dome ice core as a tool in depicting sea ice changes and southern atmospheric circulation over the previous 140 years. Atmos Environ. 2009;43(5):1051–1058. https://doi.org/10.1016/j.atmosenv.2008.11.015

Cook AM, Laue H, Junker F. Microbial desulfonation. FEMS Microbiol Rev. 1998;22(5):399–419. https://doi.org/10.1111/j.1574-6976.1998.tb00378.x

Moosvi SA, McDonald IR, Pearce DA, Kelly DP, Wood AP. Molecular detection and isolation from Antarctica of methylotrophic bacteria able to grow with methylated sulfur compounds. Syst Appl Microbiol. 2005;28(6):541–554. https://doi.org/10.1016/j.syapm.2005.03.002

Baxter NJ, Scanlan J, de Marco P, Wood AP, Murrell JC. Duplicate copies of genes encoding methanesulfonate monooxygenase in Marinosulfonomonas methylotropha strain TR3 and detection of methanesulfonate utilizers in the environment. Appl Environ Microbiol. 2002;68(1):289–296. https://doi.org/10.1128/AEM.68.1.289-296.2002

de Marco P, Murrell JC, Bordalo AA, Moradas-Ferreira P. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample. Arch Microbiol. 2000;173(2):146–153. https://doi.org/10.1007/s002039900124

Reichenbecher W, de Marco P, Scanlan J, Baxter N, Murrell JC. MSA monooxygenase. In: Fass R, Flashner Y, Reuveny S, editors. Novel approaches for bioremediation of organic pollution. Boston, MA: Springer; 1999. p. 29–37. https://doi.org/10.1007/978-1-4615-4749-5

Biedlingmaier S, Schmidt A. Alkylsulfonic acids and some S-containing detergents as sulfur sources for growth of Chlorella fusca. Arch Microbiol. 1983;136(2):124–130. https://doi.org/10.1007/BF00404786

Logan Miller A, AOSA, SCST. Tetrazolium testing handbook. Ithaca, NY: Association of Official Seed Analysts, Tetrazolium Subcommittee and Society of Commercial Seed Technologists; 2010.

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39(1):205–207. https://doi.org/10.1007/BF00018060

Nazarenko M, Lykholat Y, Grigoryuk I, Khromykh N. Consequences of mutagen depression caused by dimethilsulfate. Poljoprivreda i Sumarstvo. 2017;63(3):63–73. https://doi.org/10.17707/AgricultForest.63.3.07

Pipinis E, Milios E, Aslanidou M, Mavrokordopoulou O, Efthymiou E, Smiris P. Effects of sulphuric acid scarification, cold stratification and plant growth regulators on the germination of Rhus coriaria L. seeds. Journal of Environmental Protection and Ecology. 2017;18(2):544–552

Zapata PJ, Serrano M, Pretel MT, Amoros A, Botella MA. Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci. 2003;164(4):557–563. https://doi.org/10.1016/S0168-9452(03)00005-0

Almansouri M, Kinet JM, Lutts S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil. 2001;231(2):243–254. https://doi.org/10.1023/A:1010378409663

Constantinidou H, Kozlowski TT, Jensen K. Effects of sulfur dioxide on Pinus resinosa seedlings in the cotyledon stage 1. J Environ Qual. 1976;5(2):141–144. https://doi.org/10.2134/jeq1976.00472425000500020006x

Suwannapinunt W, Kozlowski TT. Effect of SO2 on transpiration, chlorophyll content, growth, and injury in young seedlings of woody angiosperms. Can J For Res. 1980;10(1):78–81. https://doi.org/10.1139/x80-013

Yi H, Liu J, Zheng K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley. Ecotoxicol Environ Saf. 2005;62(3):421–426. https://doi.org/10.1016/j.ecoenv.2004.11.005

Ghosh A, Dey K, Bauri FK, Dey AN. Effects of different pre-germination treatment methods on the germination and seedling growth of yellow passion fruit (Passiflora edulis var. flavicarpa). Int J Curr Microbiol Appl Sci. 2017;6(4):630–636. https://doi.org/10.20546/ijcmas.2017.604.077

López-Bucio J, Cruz-Ramırez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol. 2003;6(3):280–287. https://doi.org/10.1016/S1369-5266(03)00035-9

Lichtenthaler HK, Miehé JA. Fluorescence imaging as a diagnostic tool for plant stress. Trends Plant Sci. 1997;2(8):316–320. https://doi.org/10.1016/S1360-1385(97)89954-2

Baker NR, Rosenqvist E. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 2004;55(403):1607–1621. https://doi.org/10.1093/jxb/erh196

Jiang Y, Ding X, Zhang D, Deng Q, Yu CL, Zhou S, et al. Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environ Exp Bot. 2017;133:70–77. https://doi.org/10.1016/j.envexpbot.2016.10.002

Liu Y, Li Y, Li L, Zhu Y, Liu J, Li G, et al. Attenuation of sulfur dioxide damage to wheat seedlings by co-exposure to nitric oxide. Bull Environ Contam Toxicol. 2017;99(1):146–151. https://doi.org/10.1007/s00128-017-2103-9

Khan MIR, Nazir F, Asgher M, Per TS, Khan NA. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol. 2015;173:9–18. https://doi.org/10.1016/j.jplph.2014.09.011

Karolewski P. The role of free proline in the sensitivity of poplar (Populus ‘Robusta’) plants to the action of SO1. For Pathol. 1985;15(4):199–206. https://doi.org/10.1111/j.1439-0329.1985.tb00886.x

Anbazhagan M, Krishnamurthy R, Bhagwat KA. Proline: an enigmatic indicator of air pollution tolerance in rice cultivars. J Plant Physiol. 1988;133(1):122–123. https://doi.org/10.1016/S0176-1617(88)80098-1

Tanveer A, Javaid MM, Abbas RN, Ali HH, Nazir MQ, Balal RM, et al. Germination ecology of catchfly (Silene conoidea) seeds of different colors. Planta Daninha. 2017;35:e017152429. https://doi.org/10.1590/s0100-83582017350100030

Baskin JM, Baskin CC. Germination dimorphism in Heterotheca subaxillaris var. subaxillaris. Bulletin of the Torrey Botanical Club. 1976;103(5):201–206. https://doi.org/10.2307/2484679

Silvertown JW. Phenotypic variety in seed germination behavior: the ontogeny and evolution of somatic polymorphism in seeds. Am Nat. 1984;124(1):1–16. https://doi.org/10.1086/284249

de Figueiredo PS, Silva NML. Somatic polymorphism variation in Crotalaria retusa L. Seeds. Am J Plant Sci. 2018;9(01):46–59. https://doi.org/ 10.4236/ajps.2018.91005

Sorensen AE. Somatic polymorphism and seed dispersal. Nature. 1978;276(5684):174–176. https://doi.org/10.1038/276174a0

Sharma NK, Sharma MM, Sen DN. Seed perpetuation in Rhynchosia capitata DC. Biol Plant. 1978;20(3):225–228. https://doi.org/10.1007/BF02923633

Harper JL, Obeid M. Influence of seed size and depth of sowing on the establishment and growth of varieties of fiber and oil seed flax. Crop Sci. 1967;7(5):527–532. https://doi.org/10.2135/cropsci1967.0011183X000700050036x

Harper JL. Establishment, aggression and cohabitation in weedy species. In: Baker IM, Stebbins GL, editors. The genetics of colonization species. New York, NY: Academic Press; 1965. p. 243–268.