Regulatory roles of sugars in plant growth and development
Abstract
Keywords
Full Text:
PDFReferences
Chaiwanon J, Wang W, Zhu JY, Oh E, Wang ZY. Information integration and communication in plant growth regulation. Cell. 2016;164:1257–1268. https://doi.org/10.1016/j.cell.2016.01.044
Griffiths CA, Paul MJ, Foyer CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. Biochim Biophys Acta Bioenergetics. 2016;1857:1715–1725. https://doi.org/10.1016/j.bbabio.2016.07.007
Martín-Fontecha ES, Tarancón C, Cubas P. To grow or not to grow, a power-saving program induced in dormant buds. Curr Opin Plant Biol. 2018;41:102–109. https://doi.org/10.1016/j.pbi.2017.10.001
Smeekens S, Ma J, Hanson J, Rolland F. Sugar signal and molecular networks controlling plant growth. Curr Opin Plant Biol. 2010;13:274–279. https://doi.org/10.1016/j.pbi.2009.12.002
Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot. 2012;63:3367–3377. https://doi.org/10.1093/jxb/err379
Yuan TT, Xu HH, Zhang KX, Guo TT, Lu YT. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant Cell Environ. 2014;37:1338–1350. https://doi.org/10.1111/pce.12233
Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol. 2016;33:116–125. https://doi.org/10.1016/j.pbi.2016.06.018
Baena-González E, Hanson J. Shaping plant development through the SnRK1-TOR metabolic regulators. Curr Opin Plant Biol. 2017;35:152–157. https://doi.org/10.1016/j.pbi.2016.12.004
Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol. 2014;65:33–67. https://doi.org/10.1146/annurev-arplant-050213-040251
Ciereszko I. Sucrose metabolism in plant tissues under stress conditions: key enzymes, localization and function. In: Maksymiec W, editor. Compartmentation of responses to stresses in higher plants, true or false. Kerala: Transworld Research Network; 2009. p. 193–218.
Żebrowska E, Milewska M, Ciereszko I. Mechanisms of oat (Avena sativa L.) acclimation to phosphate deficiency. PeerJ. 2017;5:e3989. https://doi.org/10.7717/peerj.3989
Sami F, Yusuf M, Faizan M, Faraz A, Hayat S. Role of sugars under abiotic stress. Plant Physiol Biochem. 2016; 109:54–61. https://doi.org/10.1016/j.plaphy.2016.09.005
Łukaszuk E, Rys M, Możdżeń K, Stawoska I, Skoczowski A, Ciereszko I. Photosynthesis and sucrose metabolism in leaves of Arabidopsis thaliana aos, ein4 and rcd1 mutants as affected by wounding. Acta Physiol Plant. 2017;39:17. https://doi.org/10.1007/s11738-016-2309-1
Fernandez O, Ishihara H, George GM, Mengin V, Flis A, Sumner D, et al. Leaf starch turnover occurs in long days and in falling light at the end of the day. Plant Physiol. 2017;174:2199–2212. https://doi.org/10.1104/pp.17.00601
Morkunas I, Ratajczak L. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol Plant. 2014;36:1607–1619. https://doi.org/10.1007/s11738-014-1559-z
Morkunas I, Woźniak A, Formela M, Marczak Ł, Narożna D, Borowiak-Sobkowiak B, et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma. 2016;253:1063–1079. https://doi.org/10.1007/s00709-015-0865-7
Formela M, Samardakiewicz S, Marczak Ł, Nowak W, Narożna D, Bednarski W, et al. Effects of endogenous signals and Fusarium oxysporum on the mechanism regulating genistein synthesis and accumulation in yellow lupine and their impact on plant cell cytoskeleton. Molecules. 2014;19:13392–13421. https://doi.org/10.3390/molecules190913392
Bezrutczyk M, Yang J, Eom J, Prior M, Sosso D, Hartwig T, et al. Sugar flux and signaling in plant–microbe interactions. Plant J. 2018;93:675–685. https://doi.org/10.1111/tpj.13775
Ciereszko I, Kleczkowski LA. Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis. Acta Physiol Plant. 2005;27:147–155. https://doi.org/10.1007/s11738-005-0018-2
Mao J, Li W, Mi B, Dawuda MM, Calderon-Urrea A, Ma Z, et al. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in ‘Red Globe’ (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis. Planta. 2017;246:537. https://doi.org/10.1007/s00425-017-2712-x
Polit JT, Ciereszko I. Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion. J Plant Physiol. 2012;169:1597–1606. https://doi.org/10.1016/j.jplph.2012.04.017
Kunz S, Pesquet E, Kleczkowski LA. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One. 2014;9:e100312. https://doi.org/10.1371/journal.pone.0100312
Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol. 2014;57:67–79. https://doi.org/10.1007/s12374-014-0902-7
Figueroa CM, Lunn JE. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol. 2016;172:7–27. https://doi.org/10.1104/pp.16.00417
O’Hara LE, Paul MJ, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant. 2013;6:261–274. https://doi.org/10.1093/mp/sss120
Jang JC, Leόn P, Sheen J. Hexokinase as a sugar sensor in higher plants. Plant Cell. 1997;9:5–19. https://doi.org/10.1105/tpc.9.1.5
Chiou TJ, Bush DR. Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA. 1998;95:4784–4788. https://doi.org/10.1073/pnas.95.8.4784
Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006;57:675–709. https://doi.org/10.1146/annurev.arplant.57.032905.105441
Ciereszko I. Sugar sensing and signal transduction in plant cells. Postępy Biologii Komórki. 2007;34:695–713.
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot. 2014;65:799–807. https://doi.org/10.1093/jxb/ert474
Matsoukas IG. Crosstalk between photoreceptor and sugar signaling modulates floral signal transduction. Front Physiol. 2017;8:382. http://doi.org/10.3389/fphys.2017.00382
Price J, LI TC, Kang SG, NA JK, Jang JC. Mechanism of glucose signaling during germination of Arabidopsis. Plant Physiol. 2003;132:1424–1338. https://doi.org/10.1104/pp.103.020347
Dekkers BJ, Schuurmans JA, Smeekens SC. Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol Biol. 2008;67:151–167. https://doi.org/10.1007/s11103-008-9308-6
Osuna D, Prieto P, Aguilar M. Control of seed germination and plant development by carbon and nitrogen availability. Front Plant Sci. 2015;6:1023. https://doi.org/10.3389/fpls.2015.01023
Zhong C, Xu H, Ye S, Wang S, Li L, Zhang S, et al. Gibberellic acid-stimulated Arabidopsis6 serves as an integrator of gibberellin, abscisic acid, and glucose signaling during seed germination in Arabidopsis. Plant Physiol. 2015;169:2288–2303. https://doi.org/10.1104/pp.15.00858
Gibson SI. Control of plant development and gene regulation by sugar signaling. Curr Opin Plant Biol. 2005;8:93–102. https://doi.org/10.1016/j.pbi.2004.11.003
Shahri W, Ahmad SS, Tahir I. Sugar signaling in plant growth and development. In: Hakeem K, Rehman R, Tahir I, editors. Plant signaling: understanding the molecular crosstalk. New Delhi: Springer; 2014. https://doi.org/10.1007/978-81-322-1542-4_5
Cho YH, Yoo SD. Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet. 2011;7(1):e1001263. https://doi.org/10.1371/journal.pgen.1001263
Hirsche J, Fernández JMG, Stabentheiner E, Großkinsky DK, Roitsch T. Differential effects of carbohydrates on Arabidopsis pollen germination. Plant Cell Physiol. 2017;58:691–701. https://doi.org/10.1093/pcp/pcx020
van Dingenen J, de Milde L, Vermeersch M, Maleux K, de Rycke R, de Bruyne M, et al. Chloroplasts are central players in sugar-induced leaf growth. Plant Physiol. 2016;171:590–605. https://doi.org/10.1104/pp.15.01669
Kelly G, Sade N, Doron-Faigenboim A, Lerner S, Shatil-Cohen A, Yeselson Y, et al. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential. Plant J. 2017;91:325–339. https://doi.org/10.1111/tpj.13568
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. J Exp Bot. 2012;63:1559–1574. https://doi.org/10.1093/jxb/err429
Eckstein A, Zięba P, Gabryś H. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul. 2012;31:90–101. https://doi.org/10.1007/s00344-011-9222-z
Paul MJ, Primavesi LF, Jhurreea J, Zhang Y. Trehalose metabolism and signaling. Annu Rev Plant Biol. 2008;59:417–441. https://doi.org/10.1146/annurev.arplant.59.032607.092945
Schluepmann H, Berke L, Sanchez-Perez GF. Metabolism control over growth: a case for trehalose-6-phosphate in plants. J Exp Bot. 2012;63:3379–3390. https://doi.org/10.1093/jxb/err311
Usadel B, Bläsing OE, Gibon Y, Retzlaff K, Höhne M, Günther M, et al. Global transcript levels respond to small changes of the carbon status during progressive exhaustion of carbohydrates in Arabidopsis rosettes. Plant Physiol. 2008;146(4):1834–1861. https://doi.org/10.1104/pp.107.115592
Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife. 2013;2:e00260. https://doi.org/10.7554/eLife.00260
Wingler A. Transitioning to the next phase: the role of sugar signaling throughout the plant life cycle. Plant Physiol. 2018;176:1075–1084. https://doi.org/10.1104/pp.17.01229
Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA. 2014;111:6092–6097. https://doi.org/10.1073/pnas.1322045111
Barbier FF, Lunn JE, Beveridge CA. Ready, steady, go! A sugar hit starts the race to shoot branching. Curr Opin Plant Biol. 2015;25:39–45. https://doi.org/10.1016/j.pbi.2015.04.004
Kebrom TH. A growing stem inhibits bud outgrowth – the overlooked theory of apical dominance. Front Plant Sci. 2017;8:1874. https://doi.org/10.3389/fpls.2017.01874
de Schepper V, de Swaef T, Bauweraerts I, Steppe K. Phloem transport: a review of mechanisms and controls. J Exp Bot. 2013;64(16):4839–4850. https://doi.org/10.1093/jxb/ert302
van Bel AJE, Hess PH. Hexoses as phloem transport sugars: the end of a dogma? J Exp Bot. 2008;59:261–272. https://doi.org/10.1093/jxb/erm294
Liu DD, Chao WM, Turgeon R. Transport of sucrose, not hexose, in the phloem. J Exp Bot. 2012;63(11):4315–4320. https://doi.org/10.1093/jxb/ers127
Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, Qu XQ, et al. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol. 2015;25:53–62. https://doi.org/10.1016/j.pbi.2015.04.005
Liu X, Zhang Y, Yang C, Tian Z, Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep. 2016;6:24563. https://doi.org/10.1038/srep24563
Matsoukas IG. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet. 2014;5:218. https://doi.org/10.3389/fgene.2014.00218
King RW, Hisamatsu T, Goldschmidt EE, Blundell C. The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp Bot. 2008;59(14):3811–3820. https://doi.org/10.1093/jxb/ern231
Yu S, Lian H, Wang JW. Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol. 2015;27:1–7. https://doi.org/10.1016/j.pbi.2015.05.009
Morkunas I, Borek S, Formela M, Ratajczak L. Plant responses to sugar starvation. In: Chang CF, editor. Carbohydrates – comprehensive studies on glycobiology and glycotechnology. Rijeka: InTech; 2012. p. 409–438. https://doi.org/10.5772/51569
Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A. Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta. 2006;224:556–568. https://doi.org/10.1007/s00425-006-0243-y
Wingler A, Delatte TL, O’Hara LE, Primavesi LF, Jhurreea D, Paul MJ, et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 2012;158:1241–1251. https://doi.org/10.1104/pp.111.191908
Moore B, Zhou L, Rolland F, Hall Q, Cheng W-H, Liu YX, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 2003;300:332–336. https://doi.org/10.1126/science.1080585
Sawicki M, Aït Barka E, Clément C, Vaillant-Gaveau N, Jacquard C. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. J Exp Bot. 2015;66:1707–1719. https://doi.org/10.1093/jxb/eru533
Polit JT, Ciereszko I. In situ activities of hexokinase and fructokinase in relation to phosphorylation status of root meristem cells of Vicia faba during reactivation from sugar starvation. Physiol Plant. 2009;135:342–350. https://doi.org/10.1111/j.1399-3054.2008.01201.x
Wang L, Ruan YL. Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci. 2013;4:163. https://doi.org/10.3389/fpls.2013.00163
Chevalier C, Bourdon M, Pirrello J, Cheniclet C, Gévaudant F, Frangne N. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory. J Exp Bot. 2014;65:2731–2746. https://doi.org/10.1093/jxb/ert366
Xiong Y, Sheen J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 2014;164:499–512. https://doi.org/10.1104/pp.113.229948
Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell. 2005;17:3257–3281. https://doi.org/10.1105/tpc.105.035261
Łukaszuk E, Ciereszko I. Plants UDP-glucose pyrophosphorylase – an underestimate enzyme. Postępy Biologii Komórki. 2010;37:279–295.
Decker D, Öberg C, Kleczkowski LA. Identification and characterization of inhibitors of UDP-glucose and UDP-sugar pyrophosphorylases for in vivo studies. Plant J. 2017;90:1093–1107. https://doi.org/10.1111/tpj.13531
van Rensburg JHC, van den Ende W. UDP-glucose: a potential signaling molecule in plants? Front Plant Sci. 2018;8:2230. https://doi.org/10.3389/fpls.2017.02230
Keunen E, Peshev D, Vangronsveld J, van den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 2013;36:1242–1255. https://doi.org/10.1111/pce.12061
Ljung K, Nemhauser JL, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol. 2015;25:130–137. https://doi.org/10.1016/j.pbi.2015.05.022
Baier M, Hemmann G, Holman R, Corke F, Card R, Smith C, et al. Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses. Plant Physiol. 2004;134:81–91. https://doi.org/10.1104/pp.103.031674
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. J Integr Plant Biol. 2017;59:322–335. https://doi.org/10.1111/jipb.12539
Cho YH, Yoo D, Sheen J. Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell. 2006;127:579–589. https://doi.org/10.1016/j.cell.2006.09.028
Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, et al. Biochemical and structural study of Arabidopsis hexokinase 1. Acta Crystallogr D Biol Crystallogr. 2015;71:367–375. https://doi.org/10.1107/S1399004714026091
Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, et al. Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol. 2009;149:745–759. https://doi.org/10.1104/pp.108.131227
Kim HB, Cho JI, Ryoo N, Shin DH, Park YI, Hwang Y, et al. Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism. J Integr Plant Biol. 2016;58:127–135. https://doi.org/10.1111/jipb.12366
Karve A, Moore BD. Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. J Exp Bot. 2009;60:4137–4149. https://doi.org/10.1093/jxb/erp252
Granot D, Schwartz RD, Kelly G. Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci. 2013;4:44. https://doi.org/10.3389/fpls.2013.00044
Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot. 2014;65:809–819. https://doi.org/10.1093/jxb/ert400
Geng MT, Yao Y, Wang YL, Wu XH, Sun C, Li RM, et al. Structure, expression, and functional analysis of the hexokinase gene family in cassava. Int J Mol Sci. 2017;18:1041. https://doi.org/10.3390/ijms18051041
Hanson J, Smeekens S. Sugar perception and signaling – an update. Curr Opin Plant Biol. 2009;12:562–567. https://doi.org/10.1016/j.pbi.2009.07.014
Grigston JC, Osuna D, Scheibe WR, Liu C, Stitt M, Jones AM. d-Glucose sensing by a plasma membrane regulator of G signaling protein, AtRGS1. FEBS Lett. 2008;582:3577–3584. http://doi.org/10.1016/j.febslet.2008.08.038
Jaiswal DK, Werth EG, McConnell EW, Hicks LM, Jones AM. Time-dependent, glucose-regulated Arabidopsis regulator of G-protein signaling 1 network? Curr Plant Biol. 2016;5:25–35. https://doi.org/10.1016/j.cpb.2015.11.002
Trusov Y, Botella JR. Plant G-proteins come of age: breaking the bond with animal models. Front Chem. 2016;4:24. https://doi.org/10.3389/fchem.2016.00024
Ruan YL. Signaling role of sucrose metabolism in development. Mol Plant. 2012;5:763–765. https://doi.org/10.1093/mp/sss046
Wan H, Wu M,Yang Y, Zhou G, Ruan YL. Evolution of sucrose metabolism: the dichotomy of invertases and beyond. Trends Plant Sci. 2018;23:163–177. https://doi.org/10.1016/j.tplants.2017.11.001
Tsai AY, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci. 2014;5:119. https://doi.org/10.3389/fpls.2014.00119
Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, et al. The sucrose–trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot. 2014;65:1051–1068. http://doi.org/10.1093/jxb/ert457
Griffiths CA, Sagar R, Geng Y, Primavesi LF, Patel MK, Passarelli MK, et al. Chemical intervention in plant sugar signalling increases yield and resilience. Nature. 2016;540:574–578. https://doi.org/10.1038/nature20591
Bledsoe SW, Henry C, Griffiths CA, Paul MJ, Feil R, Lunn JE, et al. The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC Plant Biol. 2017;17:74. http://doi.org/10.1186/s12870-017-1018-2
Jossier M, Bouly JP, Meimoun P, Arjmand A, Lessard P, Hawley S, et al. SnRK1 (SNF1-related kinase1) has a central role in sugar and ABA signalling in Arabidopsis thaliana. Plant J. 2009;59:316–328. https://doi.org/10.1111/j.1365-313X.2009.03871.x
Bai J, Mao J, Yang H, Khan A, Fan A, Liu S, et al. Sucrose non-ferment 1 related protein kinase 2 (SnRK2) genes could mediate the stress responses in potato (Solanum tuberosum L.). BMC Genetics. 2017;18:41. https://doi.org/10.1186/s12863-017-0506-6
Simon NM, Kusakina J, Fernández-López Á, Chembath A, Belbin FE, Dodd AN. The energy-signalling hub SnRK1 is important for sucrose-induced hypocotyl elongation. Plant Physiol. 2018;176:1299–1310. https://doi.org/10.1104/pp.17.01395
Xiong Y, Sheen J. Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol. 2015;28:83–91. https://doi.org/10.1016/j.pbi.2015.09.006
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, et al. TOR signaling and nutrient sensing. Annu Rev Plant Biol. 2016;67:261–285. https://doi.org/10.1146/annurev-arplant-043014-114648
Li X, Cai W, Liu Y, Li H, Fu L, Liu Z, et al. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci USA. 2017;114:2765–2770. https://doi.org/10.1073/pnas.1618782114
Lee K, Seo PJ. Arabidopsis TOR signaling is essential for sugar-regulated callus formation. J Integr Plant Biol. 2017;59:742–746. https://doi.org/10.1111/jipb.12560
Schepetilnikov M, Ryabova LA. Recent discoveries on the role of TOR (target of rapamycin) signaling in translation in plants. Plant Physiol. 2018;176:1095–1105. https://doi.org/10.1104/pp.17.01243
Gupta A, Singh M, Laxmi A. Multiple interactions between glucose and brassinosteroid signal transduction pathways in Arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol. 2015;168:1091–1105. https://doi.org/10.1104/pp.15.00495
Zhang Y, He J. Sugar-induced plant growth is dependent on brassinosteroids. Plant Signal Behav. 2015;10(12):e1082700. https://doi.org/10.1080/15592324.2015.1082700
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional roles of microRNAs in agronomically important plants – potential as targets for crop improvement and protection. Front Plant Sci. 2017;8:378. https://doi.org/10.3389/fpls.2017.00378
Huang H, Long J, Zheng L, Li Y, Hu Y, Yu G, et al. Identification and characterization of microRNAs in maize endosperm response to exogenous sucrose using small RNA sequencing. Genomics. 2016;108:216–223. https://doi.org/10.1016/j.ygeno.2016.10.007
DOI: https://doi.org/10.5586/asbp.3583
|
|
|