Fibonacci or quasi-symmetric phyllotaxis. Part II: botanical observations

Stéphane Douady, Christophe Golé

Abstract


Historically, the study of phyllotaxis was greatly helped by the simple description of botanical patterns by only two integer numbers, namely the number of helices (parastichies) in each direction tiling the plant stem. The use of parastichy numbers reduced the complexity of the study and created a proliferation of generalizations, among others the simple geometric model of lattices. Unfortunately, these simple descriptive method runs into difficulties when dealing with patterns presenting transitions or irregularities. Here, we propose several ways of addressing the imperfections of botanical reality. Using ontogenetic analysis, which follows the step-by-step genesis of the pattern, and crystallographic analysis, which reveal irregularity in its details, we show how to derive more information from a real botanical sample, in particular, about its irregularities and transitions. We present several examples, from the first explicit visualization of a normal Fibonacci parastichy number increase, to more exotic ones, including the quasi-symmetric patterns detected in simulations. We compare these observations qualitatively with the result of the disk-packing model, presenting evidence for the relevance of the model.

Keywords


phyllotaxis; Fibonacci; quasi-symmetry; disc-stacking model; irregular pattern

Full Text:

PDF

References


Golé C, Dumais J, Douady S. Fibonacci or quasi-symmetric. Part I: why? Acta Soc Bot Pol. 2016;85(4):3533. https://doi.org/10.5586/asbp.3533

Hotton S, Johnson V, Wilbarger J, Zwieniecki K, Atela P, Golé C, et al. The possible and the actual in phyllotaxis: bridging the gap between empirical observations and iterative models. J Plant Growth Regul. 2006;25:313–323. https://doi.org/10.1007/s00344-006-0067-9

Fierz V. Phyllotactic patterns in cones of conifers. Acta Soc Bot Pol. 2015;84(2):261–265. https://doi.org/10.5586/asbp.2015.025

Guédon Y, Refahi Y, Besnard F, Godin C, Vernoux, T. Pattern identification and characterization reveal permutations of organs as a key genetically controlled property of post-meristematic phyllotaxis, J Theor Biol. 2013;338:94–110. https://doi.org/10.1016/j.jtbi.2013.07.026

Hamant, O, Heisler MG, JÖnsson H, Krupinski P, Uyttewaal M, Bokov P, et al. Developmental patterning by mechanical signals in Arabidopsis. Science. 2008;322:1650–1655. https://doi.org/10.1126/science.1165594

Douady S, Couder Y. Phyllotaxis as a self organizing iterative process, Part III: the simulation of the transient regimes of ontogeny. J Theor Biol. 1996;178:295–312. https://doi.org/10.1006/jtbi.1996.0026

Zagórska-Marek B. Phyllotaxis triangular unit; phyllotactic transitions as the consequences of the apical wedge disclinations in a crystal-like pattern of the units. Acta Soc Bot Pol. 1987;56:229–255. https://doi.org/10.5586/asbp.1987.024

Atela P, Golé C. Rhombic tilings and primordia fronts of phyllotaxis [Preprint]. 2007 [cited 2016 Dec 30]. Available from: http://arxiv.org/abs/1701.01361

Plantefol L. La théorie des hélices foliaires multiples. Paris: Masson; 1948.

Meicenheimer RD. Role of parenchyma in Linum usitatissimum leaf trace patterns. Am J Bot. 1986;73(12):1649–1664. https://doi.org/10.2307/2444231

Zagórska-Marek B. Phyllotaxic diversity of Magnolia flowers. Acta Soc Bot Pol. 1994;62(2):117–137. https://doi.org/10.5586/asbp.1994.017

Sadoc JF, Rivier N, Charvolin J. Phyllotaxis: a non conventional crystalline solution to packing efficiency in situations with radial symmetry [Preprint]. 2012 [cited 2016 Dec 30]. Available from: https://arxiv.org/abs/1201.1432

Rivier N, Sadoc JF, Charvolin J. Phyllotaxis: a framework for foam topological evolution The European Physical Journal E. 2016;39:7. https://doi.org/10.1140/epje/i2016-16007-8

van Iterson G. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen. Jena: Gustav Fischer Verlag; 1907. https://doi.org/10.5962/bhl.title.8287

Adler I. A model of contact pressure in phyllotaxis. J Theor Biol. 1974;45:1–79. https://doi.org/10.1016/0022-5193(74)90043-5

Douady S. The selection of phyllotactic patterns. In: Jean RV, Barabé D, editors. Symmetry in plants. Singapore: World Scientific; 1998. p. 335–358. (Series in Mathematical Biology and Medicine; vol 4). https://doi.org/10.1142/9789814261074_0014

Atela P, Golé C, Hotton S. A dynamical system for plant pattern formation: a rigorous analysis. Journal of Nonlinear Science. 2002;12:641–676. https://doi.org/10.1007/s00332-002-0513-1

Lagesse C, Bordin P, Douady S. A spatial multi-scale object to analyze road networks. Netw Sci (Camb Univ Press). 2015;3(1):156–181. https://doi.org/10.1017/nws.2015.4

Hofmeister W. Allgemeine Morphologie der Gewächse. In: du Bary A, Irmisch TH, Sachs J, editors. Handbuch der Physiologischen Botanik. Leipzig: Engelman; 1868. p. 405–664.

Couder Y. Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helianthus annuus: a case study. Acta Soc Bot Pol. 1998;67(2):129–150. https://doi.org/10.5586/asbp.1998.016

Douady S, Couder Y. Phyllotaxis as a self organizing iterative process, Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns J Theor Biol. 1996;178:275–294. https://doi.org/10.1006/jtbi.1996.0025

Zagórska-Marek B, Szpak M. Virtual phyllotaxis and real plant model cases. Funct Plant Biol. 2008;35:1025–1033. https://doi.org/10.1071/FP08076




DOI: https://doi.org/10.5586/asbp.3534

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society