Acacia (wattle) and Cananga (ylang-ylang): from spiral to whorled and irregular (chaotic) phyllotactic patterns – a pictorial report

Rolf Rutishauser

Abstract


Phyllotaxis, i.e., the arrangement of leaves around the stem and leaf-like organs inside flowers is regular in most vascular plants. Thus, developmental models usually explain regular phyllotactic patterns such as Fibonacci spirals and decussate/whorled patterns that obey Hofmeister’s rule: primordia form as far away as possible from previously initiated primordia. However, flowering plants showing at first Fibonacci spirals or whorled phyllotaxes may switch to other patterns that lack an obvious order and thus may be called irregular or even chaotic. Vegetative shoot tips of various Australian wattles (Acacia spp., Leguminosae in eudicots) and flower buds of ylang-ylang (Cananga odorata) and other Annonaceae (basal angiosperms) provide examples of irregular patterning. This pictorial report provides food for thought for scientists interested in phyllotaxis patterns beyond the usual spiral and whorled patterns. Emphasis is given on irregular phyllotaxes that occur in wild-type plants, mainly correlated with geometrical parameters such as leaf and stamen primordia that are very small as compared to the size of their apical meristems. They call for additional explanatory models, combining auxin-driven development with geometrical constraints and biophysical processes.

Keywords


irregular phyllotaxis; Acacia; Leguminosae – Mimosoideae; phyllodes; stipules; Cananga; Annonaceae; flower development

Full Text:

PDF

References


Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, et al. Regulation of phyllotaxis by polar auxin transport. Nature. 2003;426:255–260. https://doi.org/10.1038/nature02081

Smith RS, Kuhlemeier C, Prusinkiewicz P. Inhibition fields for phyllotactic pattern formation: a simulation study. Can J Bot. 2006;84:1635–1649. https://doi.org/10.1139/b06-133

Lee B, Johnston R, Yang Y, Gallavotti A, Kojima M, Travençolo BAN, et al. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol. 2009;150:205–216. https://doi.org/10.1104/pp.109.137034

Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 2008;22:810–823. https://doi.org/10.1101/gad.462608

Richards FJ. Phyllotaxis: its quantitative expression and relation to growth in the apex. Philos Trans R Soc Lond B Biol Sci. 1951;235:509–563. https://doi.org/10.1098/rstb.1951.0007

Williams RF. The shoot apex and leaf growth: a study in quantitative biology. Cambridge: Cambridge University Press; 1975. https://doi.org/10.1017/CBO9780511753404

Rutishauser R. Plastochrone ratio and leaf arc as parameters of a quantitative phyllotaxis analysis in vascular plants. In: Jean RV, Barabé D, editors. Symmetry in plants. Singapore: World Scientific Press; 1998. p. 171–212. https://doi.org/10.1142/9789814261074_0008

Endress PK. Angiosperm floral evolution: morphological developmental framework. In: Soltis DE, Leebens-Mack JH, Soltis PS, editors. Developmental genetics of the flower. Amsterdam: Elsevier; 2006. p. 2–62. (Advances in Botanical Research; vol 44). https://doi.org/10.1016/s0065-2296(06)44001-5

Endress PK, Doyle JA. Floral phyllotaxis in basal angiosperms: development and evolution. Curr Opin Plant Biol. 2007;10:52–57. https://doi.org/10.1016/j.pbi.2006.11.007

Endress PK, Armstrong JE. Floral development and floral phyllotaxis in Anaxagorea (Annonaceae). Ann Bot. 2011;108:835–845. https://doi.org/10.1093/aob/mcr201

Rutishauser R, Sattler R. Architecture and development of the phyllode-stipule whorls in Acacia longipedunculata: controversial interpretations and continuum approach. Can J Bot. 1986;64:1987–2019. https://doi.org/10.1139/b86-263

Sattler R, Luckert D, Rutishauser R. Symmetry in plants: phyllode and stipule development in Acacia longipedunculata. Can J Bot. 1988;66:1270–1284. https://doi.org/10.1139/b88-182

Rutishauser R. Polymerous leaf whorls in vascular plants: developmental morphology and fuzziness or organ identities. Int J Plant Sci. 1999;160(6 suppl):S81–S103. https://doi.org/10.1086/314221

Rutishauser R, Isler B. Fuzzy Arberian morphology: Utricularia, developmental mosaics, partial shoot hypothesis of the leaf and other FAMous ideas of Agnes Arber (1879–1960) on vascular plant bauplans. Ann Bot. 2001;88:1173–1202. https://doi.org/10.1006/anbo.2001.1498

Rutishauser R, Grob V, Pfeifer E. Plants are used to having identity crises. In: Minelli A, Fusco G, editors. Evolving pathways: key themes in evolutionary developmental biology. Cambridge: Cambridge University Press; 2008. p. 194–213. https://doi.org/10.1017/CBO9780511541582.015

Rutishauser R. Phyllotactic patterns in phyllodinous acacias (Acacia subg. Heterophyllum): promising aspects for systematics. Bulletin of the International Group for the Study of Mimosoideae. 1986;14:77–108.

Maslin BR. Synoptic overview of Acacia sensu lato (Leguminosae: Mimosoideae) in East and Southeast Asia. Gardens’ Bulletin Singapore. 2015;67:231–250. https://doi.org/10.3850/S2382581215000186

Murphy DJ, Brown GK, Miller JT, Ladiges PY. Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon. 2010;59(1):7–19.

Kaplan DR. Heteroblastic leaf development in Acacia: morphological and morphogenetic implications. Cellule. 1980;73:135–203.

Hatt C, Mankessi F, Durand JB, Boudon F, Montes F, Lartaud M, et al. Characteristics of Acacia mangium shoot apical meristems in natural and in vitro conditions in relation to heteroblasty. Trees. 2012;26(3):1031–1044. https://doi.org/10.1007/s00468-012-0680-0

Kaplan DR. The concept of homology and its central role in the elucidation of plant systematic relationships. In: Duncan T, Stuessy TF, editors. Cladistics: perspectives on the reconstruction of evolutionary history. New York, NY: Columbia University Press; 1984. p. 51–70.

Simmons M. Acacias of Australia. Melbourne: Nelson; 1981.

Gardner S, Drinnan A, Newbigin E, Ladiges P. Leaf ontogeny and morphology in Acacia Mill. Muelleria. 2008;26:43–50.

World Wide Wattle. Species gallery [Internet]. 2016 [cited 2016 Dec 26]. Available from: http://worldwidewattle.com/speciesgallery

Pedley L. A revision of Acacia lycopodiifolia A. Cunn. ex Hook. and its allies. Contributions from the Queensland Herbarium. 1972;11:1–23.

Kirchoff BK. Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. Int J Plant Sci. 2003;164(4):505–517. https://doi.org/10.1086/375421

Goebel K. Organographie der Pflanzen, insbesondere der Archegoniaten und Samenpflanzen. Vol. 1. 3rd ed. Jena: Fischer; 1928.

Braun A. Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen. Nova acta Academiae Caesareae Leopoldino-Carolinae. 1831;15:195–402. https://doi.org/10.5962/bhl.title.69200

Hofmeister W. Allgemeine Morphologie der Gewächse. Leipzig: W. Engelmann; 1868.

Dormer KJ. Some examples of correlation between stipules and lateral leaf traces. New Phytol. 1944;43:151–153. https://doi.org/10.1111/j.1469-8137.1944.tb05010.x

Pedley L. A revision of Acacia Mill. in Queensland. Austrobaileya. 1978;1(2):75–234.

Pedley L. A revision of Acacia Mill. in Queensland. Austrobaileya 1979;1(3):235–337.

Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Commun. 2014;5:4473. https://doi.org/10.1038/ncomms5473

Thiv M, Ghogue JP, Grob V, Huber K, Pfeifer E, Rutishauser R. How to get off the mismatch at the generic rank in African Podostemaceae? Plant Syst Evol. 2009;283:57–77. https://doi.org/10.1007/s00606-009-0214-4

Leins P, Erbar C. Early floral developmental studies in Annonaceae. Biosystematics and Ecology Series. 1996;10:1–27.

Erbar C, Leins P. Flowers in Magnoliidae and the origin of flowers in other subclasses of the angiosperms. I. The relationships between flowers of Magnoliidae and Alismatidae. Plant Syst Evol. 1994;8(suppl):193–208. https://doi.org/10.1007/978-3-7091-6910-0_12

Endress PK. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci. 2001;162(5):1111–1140. https://doi.org/10.1086/321919

Ronse Decraene LP, Smets E. The floral development of Popowia whitei (Annonaceae). Nord J Bot. 1990;10:411–420. https://doi.org/10.1111/j.1756-1051.1990.tb01781.x

Ronse Decraene LP, Smets E. Correction. Nord J Bot. 1991;11:420. https://doi.org/10.1111/j.1756-1051.1991.tb01238.x

Ronse Decraene LP, Smets E. The distribution and systematic relevance of the androecial character polymery. Bot J Linn Soc. 1993;113:285–350. https://doi.org/10.1111/j.1095-8339.1993.tb00341.x

Zagórska-Marek B. Phyllotaxic diversity in Magnolia flowers. Acta Soc Bot Pol. 1994;63:117–137. https://doi.org/10.5586/asbp.1994.017

Zagórska-Marek B, Szpak M. Virtual phyllotaxis and real plant model cases. Funct Plant Biol. 2008;35(10):1025–1033. https://doi.org/10.1071/FP08076

Wiss D, Zagórska-Marek B. Geometric parameters of the apical meristem and the quality of phyllotactic patterns in Magnolia flowers. Acta Soc Bot Pol. 2012;81:203–216. https://doi.org/10.5586/asbp.2012.029

Staedler YM, Endress PK. Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceae). Int J Plant Sci. 2009;170:522–550. https://doi.org/10.1086/597272

Staedler YM, Weston PH, Endress PK. Floral phyllotaxis and floral architecture in Calycanthaceae. Int J Plant Sci. 2007;168(3):285–306. https://doi.org/10.1086/510417

Endress PK. Floral phyllotaxis and floral evolution. Botanische Jahrbücher für Systematik. 1987;108:417–438.

Endress PK. Chaotic floral phyllotaxis and reduced perianth in Achlys (Berberidaceae). Bot Acta. 1989;102:159–163. https://doi.org/10.1111/j.1438-8677.1989.tb00085.x

Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature. 2014;505:417–421. https://doi.org/10.1038/nature12791

Newell AC, Shipman PD, Sun Z. Phyllotaxis as an example of the symbiosis of mechanical forces and biochemical processes in living tissue. Plant Signal Behav. 2008;3(8):586–589. https://doi.org/10.4161/psb.3.8.6223

Runions A, Smith RS, Prusinkiewicz P. Computational models of auxin-driven development [Internet]. 2014 [cited 2016 Dec 26]. Available from: http://algorithmicbotany.org/papers/auxin.ARPD2014.pdf




DOI: https://doi.org/10.5586/asbp.3531

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society