Emergence of complex patterns in a higher-dimensional phyllotactic system

Robert M. Beyer, Jürgen Richter-Gebert

Abstract


A hypothesis commonly known as Hofmeister’s rule states that primordia appearing at the apical ring of a plant shoot in periodic time steps are formed in the position where the most space is available with respect to the space occupation of already-formed primordia. A corresponding two-dimensional dynamical model has been extensively studied by Douady and Couder, and shown to generate a variety of observable phyllotactic patterns indeed. In this study, motivated by mathematical interest in a theoretical phyllotaxis-inspired system rather than by a concrete biological problem, we generalize this model to three dimensions and present the dynamics observed in simulations, thereby illustrating the range of complex structures that phyllotactic mechanisms can give rise to. The patterns feature unexpected additional properties compared to the two-dimensional case, such as periodicity and chaotic behavior of the divergence angle.

Keywords


phyllotaxis; Hofmeister’s hypothesis; golden angle; dynamical systems; chaos, experimental mathematics

Full Text:

PDF

References


Hofmeister W. Allgemeine Morphologie der Gewächse. In: du Bary A, Irmisch TH, Sachs J, editors. Handbuch der Physiologischen Botanik. Leipzig: Engelman; 1868. p. 405–664.

Kirchoff BK. Shape matters: Hofmeister’s rule, primordium shape, and flower orientation. Int J Plant Sci. 2003;164:505–517. https://doi.org/10.1086/375421

van Iterson G. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen. Jena: Gustav Fisher Verlag; 1907.

Atela P, Golé C, Hotton S. A dynamical system for plant pattern formation: rigorous analysis. Journal of Nonlinear Science. 2002;12:641–676. https://doi.org/10.1007/s00332-002-0513-1

Douady S, Couder Y. Phyllotaxis as a physical self-organized growth process. Phys Rev Lett. 1992;68:2098. https://doi.org/10.1103/PhysRevLett.68.2098

Kitazawa MS, Fujimoto K. A dynamical phyllotaxis model to determine floral organ number. PLoS Comput Biol. 2015;11:e1004145. https://doi.org/10.1371/journal.pcbi.1004145

Kunz M. Some analytical results about two physical models of phyllotaxis. Communications in Mathematical Physics. 1995;169:261–295. https://doi.org/10.1007/BF02099473

Levitov LS. Energetic approach to phyllotaxis. Europhys Lett. 1991;14:533–539. https://doi.org/10.1209/0295-5075/14/6/006

Smith RS, Kuhlemeier C, Prusinkiewicz P. Inhibition fields for phyllotactic pattern formation: a simulation study. Can J Bot. 2006;84:1635–1649. https://doi.org/10.1139/B06-133

Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part I: the spiral modes resulting from time-periodic iterations. J Theor Biol. 1996;178:255–273. https://doi.org/10.1006/jtbi.1996.0024

Schwendener S. Mechanische Theorie der Blattstellungen. Leipzig: Engelmann; 1878.

Snow M, Snow R. A theory of the regulation of phyllotaxis based on Lupinus albus. Philos Trans R Soc Lond. 1962;244:483–513. https://doi.org/10.1098/rstb.1962.0003

Adler I. A model of contact pressure in phyllotaxis. J Theor Biol. 1974;45:1–79. https://doi.org/10.1016/0022-5193(74)90043-5

Adler I, Barabe D, Jean RV. A history of the study of phyllotaxis. Ann Bot. 1997;80:231–244. https://doi.org/10.1006/anbo.1997.0422

Douady S, Yves C. Phyllotaxis as a dynamical self organizing process Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol. 1996;178:275–294. https://doi.org/10.1006/jtbi.1996.0025

Williams RF. The shoot apex and leaf growth. Cambridge: Cambridge University Press; 1975. https://doi.org/10.1017/CBO9780511753404

Schwabe WW. The role and importance of vertical spacing at the plant apex in determining the phyllotactic pattern. In: Jean RV, Barabé D, editors. Symmetry in plants. Singapore: World Scientific; 1998. p. 523–535. (Series in Mathematical Biology and Medicine; vol 4). https://doi.org/10.1142/9789814261074_0020

Meicenheimer R. Relationship between shoot growth and changing phyllotaxy of Ranunculus. Am J Bot. 1995;66:557–569. https://doi.org/10.2307/2442505

Ridley JN. Packing efficiency in sunflower heads. Math Biosci. 1983;58:129–139. https://doi.org/10.1016/0025-5564(82)90056-6

Leigh EG. The golden section and spiral leaf-arrangement. Transactions of the Connecticut Academy of Arts and Sciences. 1972;44:163–176.

Strang G. Introduction to linear algebra. Wellesley: Cambridge Press; 2016.

Snow M, Snow R. Minimum areas and leaf determination. Proc R Soc Lond B Biol Sci. 1952;139:545–566. https://doi.org/10.1098/rspb.1952.0034

Atela P, Golé C. The snow dynamical system for plant pattern formation [Preprint]. 2005 [cited 2016 Dec 15]. Available from: http://www.math.smith.edu/phyllo/Assets/pdf/snowdyn.pdf

Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part III: the simulation of the transient regimes of ontogeny. J Theor Biol. 1996;178:295–312. https://doi.org/10.1006/jtbi.1996.0026




DOI: https://doi.org/10.5586/asbp.3528

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society