Effects of light on in vitro fiber development and flavonoid biosynthesis in green cotton (Gossypium hirsutum)
Abstract
Keywords
Full Text:
PDFReferences
Pan Z, Sun D, Sun J, Zhou Z, Jia Y, Pang B, et al. Effects of fiber wax and cellulose content on colored cotton fiber quality. Euphytica. 2010;173(2):141–149. http://dx.doi.org/10.1007/s10681-010-0124-0
de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose. 2010;17(3):595–606. http://dx.doi.org/10.1007/s10570-010-9403-0
AI-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol. 2009;50(7):1364–1381. http://dx.doi.org/10.1093/pcp/pcp084
Singh B, Cheek HD, Haigler CH. A synthetic auxin (NAA) suppresses secondary wall cellulose synthesis and enhances elongation in cultured cotton fiber. Plant Cell Rep. 2009;28(7):1023–1032. http://dx.doi.org/10.1007/s00299-009-0714-2
Chen J, Lv FJ, Liu JR, Ma YN, Wang YH, Chen BL, et al. Effects of different planting dates and low light on cotton fibre length formation. Acta Physiol Plant. 2014;36(10):2581–2595. http://dx.doi.org/10.1007/s11738-014-1629-2
Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, Fleming A, et al. Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol. 2004;55(3):311–314. http://dx.doi.org/10.1007/s11103-004-0158-6
Harmer S, Orford S, Timmis J. Characterisation of six α-expansin genes in Gossypium hirsutum (upland cotton). Mol Genet Genomics. 2002;268(1):1–9. http://dx.doi.org/10.1007/s00438-002-0721-2
Wang L, Ruan YL. Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmata gating and cell wall dynamics. Plant Signal Behav. 2010;5(12):1561–1564. http://dx.doi.org/10.4161/psb.5.12.13568
Salnikov VV, Grimson MJ, Seagull RW, Haigler CH. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma. 2003;221(3–4):175–184. http://dx.doi.org/10.1007/s00709-002-0079-7
Saxena IM, Brown Jr RM. Cellulose synthases and related enzymes. Curr Opin Plant Biol. 2000;3(6):523–531. http://dx.doi.org/10.1016/S1369-5266(00)00125-4
Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA. 1996;93(22):12637–12642. http://dx.doi.org/10.1073/pnas.93.22.12637
Schmutz A, Jenny T, Amrhein N, Ryser U. Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres. Planta. 1993;189(3):453–460. http://dx.doi.org/10.1007/BF00194445
Schmutz A, Jenny T, Ryser U. A caffeoyl-fatty acid-glycerol ester from wax associated with green cotton fibre suberin. Phytochemistry. 1994;36(6):1343–1346. http://dx.doi.org/10.1016/S0031-9422(00)89721-6
Zhao XQ,Wang XD. Composition analysis of pigment in colored cotton fiber. Acta Agronomica Sinica. 2005;31(4):456–462. http://dx.doi.org/10.3321/j.issn:0496-3490.2005.04.010
Zhang ML. Exploration of fiber differentiation and development and pigment component in colored cotton [PhD thesis]. Shandong: Shandong Agricultural University; 2013.
Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X. A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol. 2013;162(1):86–95. http://dx.doi.org/10.1104/pp.112.212142
Lee SH, Tewari RK, Hahn EJ, Paek KY. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tissue Organ Cult. 2007;90(2):141–151. http://dx.doi.org/10.1007/s11240-006-9191-2
Rao AQ. An overview of phytochrome: an important light switch and photo-sensory antenna for regulation of vital functioning of plants. Biologia. 2015;70(10):1273–1283. http://dx.doi.org/10.1515/biolog-2015-0147
Pettigrew WT. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci. 2001;41(4):1108–1113. http://dx.doi.org/10.2135/cropsci2001.4141108x
Pan ZE, Du XM, Sun JL, Zhou ZL, Pang BY. Influences of boll shading on fiber color and fiber quality of colored cotton. Cotton Science. 2006;18(5):264–268. http://dx.doi.org/10.3969/j.issn.1002-7807.2006.05.002
Staneloni RJ, Rodriguez-Batiller MJ, Casal JJ. Abscisic acid, high-light, and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation. Mol Plant. 2008;1(1):75–83. http://dx.doi.org/10.1093/mp/ssm007
Reis A, Kleinowski AM, Klein FRS, Telles RT, do Amarante L, Braga EJB. Light quality on the in vitro growth and production of pigments in the genus Alternanthera. J Crop Sci Biotechnol. 2015;18(5):349–357. http://dx.doi.org/10.1007/s12892-015-0074-0
Kasperbauer MJ. Cotton fiber length is affected by far-red light impinging on developing bolls. Crop Sci. 2000;40(6):1673–1678. http://dx.doi.org/10.2135/cropsci2000.4061673x
Beasley CA, Ting IP. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot. 1973;60(2):130–139. http://dx.doi.org/10.2307/2441099
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, et al. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol. 2005;46(8):1384–1391. http://dx.doi.org/10.1093/pcp/pci150
Li HS. Experiment principles and techniques for plant physiology and biochemistry. Beijing: Higher Education Press; 2000.
Viles Jr FJ, Silverman L. Determination of starch and cellulose with anthrone. Anal Chem. 1949;21(8):950–953. http://dx.doi.org/10.1021/ac60032a019
Song CQ. Secondary metabolites. In: Shanghai Institute of Plant Physiology, Chinese Academy of Sciences; Plant Physiology Society of Shanghai, editors. Modern guidance for plant physiology experiments. Beijing: Science Press; 1999. p. 222.
Teixeira EM, Corrêa AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose. 2010;17(3):595–606. http://dx.doi.org/10.1007/s10570-010-9403-0
Kong SG, Okajima K. Diverse photoreceptors and light responses in plants. J Plant Res. 2016;129(2):111–114. http://dx.doi.org/10.1007/s10265-016-0792-5
Kasperbauer MJ. Cotton fiber length is affected by far-red light impinging on developing bolls. Crop Sci. 2000;40(6):1673–1678. http://dx.doi.org/10.2135/cropsci2000.4061673x
Christian F, Roman U. Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev. 2011;25(10):1004–1009. http://dx.doi.org/10.1101/gad.2053911
Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 1998;118(2):399–406. http://dx.doi.org/10.1104/pp.118.2.399
Ruan YL, Llewellyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell. 2003;15(4):952–964. http://dx.doi.org/10.1105/tpc.010108
Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot. 2005;56(413):977–984. http://dx.doi.org/10.1093/jxb/eri091
Delmer DP, Haigler CH. The regulation of metabolic flux to cellulose, a major sink for carbon in plants. Metab Eng. 2002;4(1):22–28. http://dx.doi.org/10.1006/mben.2001.0206
Zhang W, Shu H, Hu H, Chen B, Wang Y, Zhou Z. Genotypic differences in some physiological characteristics during cotton fiber thickening and its influence on fiber strength. Acta Physiol Plant. 2009;31(5):927–935. http://dx.doi.org/10.1007/s11738-009-0306-3
Meier H, Buchs L, Buchala AJ, Homewood T. (1→3)-β-D-Glucan (callose) is a probable intermediate in biosynthesis of cellulose of cotton fibres. Nature. 1981;289:821–822. http://dx.doi.org/10.1038/289821a0
Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 1997;38(3):375–378. http://dx.doi.org/10.1093/oxfordjournals.pcp.a029178
Li HM, Xu ZG, Tang CM . Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult. 2010;103(2):155–163. http://dx.doi.org/10.1007/s00438-002-0721-2
Puspa RP, Ikuo K, Ryosuke M. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 2008;92(2):147–153. http://dx.doi.org/10.1007/s11240-007-9317-1
González CV, Fanzone ML, Cortés LE, Bottini R, Lijavetzky DC, Ballaré CL, et al. Fruit-localized photoreceptors increase phenolic compounds in berry skins of field-grown Vitis vinifera L. cv. Malbec. Phytochemistry. 2014;110:46–57. http://dx.doi.org/10.1016/j.phytochem.2014.11.018
Zoratti L, Karppinen K, Luengo Escobar A, Häggman H, Jaakola L. Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci. 2014;5(5)1–16. http://dx.doi.org/10.3389/fpls.2014.00534
Gerhardt KE, Lampi MA, Greenberg BM. The effects of far-red light on plant growth and flavonoid accumulation in Brassica napus in the presence of ultraviolet B radiation. Photochem Photobiol. 2008;84(6):1445–1454. http://dx.doi.org/10.1111/j.1751-1097.2008.00362.x
Namlı S, Işıkalan Ç, Akbaş F, Toker Z, Tilkat EA. Effects of UV-B radiation on total phenolic, flavonoid and hypericin contents in Hypericum retusum Aucher grown under in vitro conditions. Nat Prod Res. 2014;28(24):2286–2292. http://dx.doi.org/10.1080/14786419.2014.940588
Huang X, Yao J, Zhao Y, Xie D, Jiang X , Xu Z. Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn hairy root cultures with UV-B irradiation. Front Plant Sci. 2016;7(63):1–11. http://dx.doi.org/10.3389/fpls.2016.00063
Gao JJ, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, et al. Forced expression of Mdmyb10, a myb transcription factor gene from apple, enhances tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep. 2011;38(1):205–211. http://dx.doi.org/10.1007/s11033-010-0096-0
Hua SJ, Wang XD, Yuan SN, Shao MG, Zhao XQ, Zhu SJ, et al. Characterization of pigmentation and cellulose synthesis in colored cotton fibers. Crop Sci. 2007;47(4):1540–1546. http://dx.doi.org/10.1007/s00438-002-0721-2
Yuan SN, Hua SJ, Malik W, Bibi N, Wang XD. Physiological and biochemical dissection of fiber development in colored cotton. Euphytica. 2012;187(2):215–226. http://dx.doi.org/10.1007/s10681-012-0653-9
DOI: https://doi.org/10.5586/asbp.3499
|
|
|







