AFLP analysis reveals infraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe

Józef Mitka, Piotr Boroń, Ada Wróblewska, Wojciech Bąba

Abstract


The genetic diversity of two Aconitum species endemic to the Carpathian Mountains and Sudetes was studied. A reticulate evolution between them was earlier postulated as an effect of secondary contact. The genetic diversity at the individual and taxonomic levels was examined across the entire geographical ranges of the taxa in 11 populations based on 247 AFLP markers found in 112 individuals in the Sudetes and Western Carpathians. The overall genetic differentiation was greater within the Sudetic A. plicatum (FST = 0.139, P < 0.001) than within the Carpathian A. firmum (FST = 0.062, P < 0.001), presumably due to the long-lasting geographic isolation between the Giant Mts and Praděd (Sudetes) populations of the species. Interestingly, relatively distant and presently isolated populations of A. plicatum and A. f. subsp. maninense share a part of their genomes. It could be an effect of their common evolutionary history, including past and present reticulations. The introgression among infraspecific taxa of Aconitum is common, probably as a result of seed dispersal within a distance of ca. 20 km (Mantel’s r = 0.36, P = 0.01). Aconitum f. subsp. maninense had the highest genetic diversity indices: Nei’s h and rarefied FAr, and divergence index DW (P ≤ 0.05), pointing to its presumably ancient age and long-term isolation.

Keywords


Carpathians; introgression; Linnaean taxonomy; phylogenetics; population genetics; reticulate evolution; Sudetes

Full Text:

PDF

References


Ilnicki T, Mitka J. Chromosome numbers in Aconitum sect. Aconitum (Ranunculaceae) from the Carpathians. Caryologia. 2009;62:198–203.

Ilnicki T, Mitka J. Chromosome numbers in Aconitum sect. Cammarum (Ranunculaceae) from the Carpathians. Caryologia. 2011;64:446–452.

Mitka J, Sutkowska A, Ilnicki T, Joachimiak AJ. Reticulate evolution of high-alpine Aconitum (Ranunculaceae) in the Eastern Sudetes and Western Carpathians (Central Europe). Acta Biol Cracov Ser Bot. 2007;49:15–26.

Mitka J. The genus Aconitum (Ranunculaceae) in Poland and adjacent countries. A phenetic-geographic study. Cracow: Institute of Botany of Jagiellonian University; 2003.

Starmühler W, Mitka J. Systematics and chorology of Aconitum sect. Napellus (Ranunculaceae) and its hybrids in the Northern Carpathians and Forest Carpathians. Thaiszia. 2001;10:115–136.

Kadota Y. A revision of Aconitum subgenus Aconitum (Ranunculaceae) of East Asia. Utsunomiya: Sanwa Shoyaku Company, Ltd.; 1987.

Kita Y, Ito M. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgen. Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst Evol. 2000;225:1–13. http://dx.doi.org/10.1007/BF00985455

Krzakowa M, Szweykowski J. A natural hybrid between two different Aconitum species (Ranunculaceae, Dicotyledones) from the Tatry Mountains. Bull Acad Pol Sci Lett Ser B. 1977;25:223–225.

Zieliński R. An electrophoretic and cytological study of hybridization between A. napellus ssp. skerisorae (2n = 32) and A. variegatum (2n = 16). I. Electrophoretic evidence. Acta Soc Bot Pol. 1982;51:453–464. http://dx.doi.org/10.5586/asbp.1982.042

Zieliński R. An electrophoretic and cytological study of hybridization between A. napellus ssp. skerisorae (2n = 32) and A. variegatum (2n = 16). II. Cytological evidence. Acta Soc Bot Pol. 1982;51:465–471. http://dx.doi.org/10.5586/asbp.1982.043

Stebbins GL. Polyploidy, hybrididization and invasion of new habitats. Ann Mo Bot Gard. 1985;72:824–832. http://dx.doi.org/10.2307/2399224

Sutkowska A, Boroń P, Mitka J. Natural hybrid zone of Aconitum species in the Western Carpathians: Linnaean taxonomy and ISSR fingerprinting. Acta Biol Crac Ser Bot. 2013;55:114–126. http://dx.doi.org/10.2478/abcsb-2013-00015

Aleksandrowski P, Mazur S. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif, In: Winchester JA, Pharaoh TC, Vernirers J, editors. Palaeozoic amalgamation in Central Europe. London: Geological Society; 2002. http://dx.doi.org/10.1144/gsl.sp.2002.201.01.12

Kryza R, Mazur S, Oberc-Dziedzic T. The Sudetic geological mosaic: Insights into the root of the Variscan orogen. Przegląd Geologiczny. 2004;52:761–773.

Ozenda P. La végétation de la chaîne Alpine dans l’éspace montagnard européen. Paris: Masson; 1985.

Rögl von F. Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Nat Hist Mus Wien. 1998;99A:279–310.

Golonka J, Krobicki M, Oszczypko N, Ślączka A. Palinspastic modelling and Carpathian phanerozoic palaeogeographical maps, In: Oszczypko N, Uchman A, Malata E, editors. Palaeotectonic evolution of the Outer Carpathian and Pieniny Klippen Belt Basins. Kraków: Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego; 2006.

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–4414. http://dx.doi.org/10.1093/nar/23.21.4407

Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologist and evolutionist. Mol Ecol. 2007;16:3737–3758. http://dx.doi.org/10.1111/j.1365-294X.2007.03435.x

Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973;70:3321–3323. http://dx.doi.org/10.1073/pnas.70.12.3321

Krauss SL. Unbiased gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol. 2000;9:1241–1245. http://dx.doi.org/10.1046/j.1365-294x.2000.01001.x

Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol. 2002;11:139–151. http://dx.doi.org/10.1046/j.0962-1083.2001.01415.x

R Core Team. R: a language and environment for statistical computing [Internet]. 2011 [cited 2015 May 27]; Available from: http://cran.r-project.org/

Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, et al. Vegan: Community Ecology Package. R package version 1.17–4 [Internet]. 2011 [cited 2015 May 27]; Available from: http://cran.r-project.org/

Schönswetter P, Tribsch A. Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon. 2005;54:725–732. http://dx.doi.org/10.2307/25065429

Nei M, Li WH. Mathematical model for studying genetic variation in term of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:5269–5273. http://dx.doi.org/10.1073/pnas.76.10.5269

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89:583–590.

Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J Stat Soft. 2007;22:1–20.

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267. http://dx.doi.org/10.1093/molbev/msj030

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–1587.

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7:574–578. http://dx.doi.org/10.1111/j.1471-8286.2007.01758.x

Ehrich D. AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes. 2006;6:603–604. http://dx.doi.org/10.1111/j.1471-8286.2006.01380.x

Waples RS, Gaggiotti O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol. 2006;15:1419–1439. http://dx.doi.org/10.1111/j.1365-294X.2006.02890.x

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol. 2005;14:2611–2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:47–50.

Sokal RR. Spatial data analysis and historical processes. In: Diday E, Escoufier Y, Lebart L, Pages J, Schektman Y, Tomassone R, editors. Data analysis and informatics, IV. Amsterdam: Elsevier Science Publishers BV; 1986.

Ogden NL, Sokal RR. Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst Zool. 1986;35:608–617. http://dx.doi.org/10.2307/2413120

Pawłowski B. Die Karpaten und die Sudeten – eine vergleichende pflanzengeographische Studie. Arch Naturschutz Landschaftsforch. 1969;9:251–363.

Starkel L. Geografia Polski – środowisko przyrodnicze. Warszawa: PWN; 1991.

Stachurska-Swakoń A, Cieślak E, Ronikier M. Phylogeography of a subalpine tall-herb Ranunculus platanifolius (Ranunculaceae) reveals two main genetic lineages in the European mountains. Bot J Linn Soc. 2013;171(2):413–428. http://dx.doi.org/10.1111/j.1095-8339.2012.01323.x

Kwiatkowski P, Krahulec F. The distribution of high mountain species of vascular plants within the mountains of the Sudetic system. In: Zemanek B, editor. Geobotanist and taxonomist. A volume dedicated to Professor Adam Zając on the 70th anniversary of his birth. Cracow: Institute of Botany, Jagiellonian University; 2011. p. 69–89.

Ronikier R, Costa A, Fuertes Aguilar J, Nieto Feliner G, Küpfer P, Mirek Z. Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): chloroplast DNA reveals two evolutionary lineages across Central Europe and Scandinavia. J Biogeogr. 2011;35:1650–1664. http://dx.doi.org/10.1111/j.1365-2699.2008.01907.x