Stromuling when stressed!

Björn Krenz, Tai Wei Guo, Tatjana Kleinow

Abstract


Stromules are stroma-filled tubules, extruding from the plastid and surrounded by both envelope membranes, but so far, stromules remain enigmatic structures and their function unknown. Stromules can interconnect plastids and have been found to associate with the nucleus, endoplasmic reticulum, Golgi complex, plasma membrane, mitochondria and peroxisomes. This minireview briefly summarizes markers to visualize stromules, inducers of stromules and provides new data about plant virus induced stromules.

Keywords


stromule; geminivirus; plant virus; chloroplast

Full Text:

PDF

References


Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, et al. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet. 2012;46(1):233–264. http://dx.doi.org/10.1146/annurev-genet-110410-132544

Stael S, Kmiecik P, Willems P, van der Kelen K, Coll NS, Teige M, et al. Plant innate immunity – sunny side up? Trends Plant Sci. 2014 (in press). http://dx.doi.org/10.1016/j.tplants.2014.10.002

Oikawa K, Kasahara M, Kiyosue T, Kagawa T, Suetsugu N, Takahashi F, et al. Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell. 2003;15(12):2805–2815. http://dx.doi.org/10.1105/tpc.016428

Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000;5(4):174–182. http://dx.doi.org/10.1016/S1360-1385(00)01598-3

Köhler RH, Hanson MR. Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci. 2000;113 (pt 1):81–89.

Hanson MR. GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot. 2001;52(356):529–539. http://dx.doi.org/10.1093/jexbot/52.356.529

Sage TL, Sage RF. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol. 2009;50(4):756–772. http://dx.doi.org/10.1093/pcp/pcp033

Mathur J, Mammone A, Barton KA. Organelle extensions in plant cells. J Integr Plant Biol. 2012;54:851–867. http://dx.doi.org/10.1111/j.1744-7909.2012.01175.x

Holzinger A, Buchner O, Lütz C, Hanson MR. Temperature-sensitive formation of chloroplast protrusions and stromules in mesophyll cells of Arabidopsis thaliana. Protoplasma. 2007;230(1–2):23–30. http://dx.doi.org/10.1007/s00709-006-0222-y

Logan DC. The mitochondrial compartment. J Exp Bot. 2006;57(6):1225–1243. http://dx.doi.org/10.1093/jxb/erj151

Bishop GJ. Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci. 2007;12(9):377–380. http://dx.doi.org/10.1016/j.tplants.2007.07.001

Gunning BES. Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma. 2005;225(1–2):33–42. http://dx.doi.org/10.1007/s00709-004-0073-3

Waters MT, Fray RG, Pyke KA. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J. 2004;39(4):655–667. http://dx.doi.org/10.1111/j.1365-313X.2004.02164.x

Schattat MH, Barton KA, Mathur J. The myth of interconnected plastids and related phenomena. Protoplasma. 2014 (in press). http://dx.doi.org/10.1007/s00709-014-0666-4

Menzel D. An interconnected plastidom in Acetabularia: implications for the mechanism of chloroplast motility. Protoplasma. 1994;179(3–4):166–171. http://dx.doi.org/10.1007/BF01403955

Köhler RH, Zipfel WR, Webb WW, Hanson MR. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 1997;11(3):613–621. http://dx.doi.org/10.1046/j.1365-313X.1997.11030613.x

Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR. Exchange of protein molecules through connections between higher plant plastids. Science. 1997;276(5321):2039–2042. http://dx.doi.org/10.1126/science.276.5321.2039

Natesan SKA, Sullivan JA, Gray JC. Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot. 2005;56(413):787–797. http://dx.doi.org/10.1093/jxb/eri088

Erickson JL, Ziegler J, Guevara D, Abel S, Klösgen RB, Mathur J, et al. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays. BMC Plant Biol. 2014;14(1):127. http://dx.doi.org/10.1186/1471-2229-14-127

Marques JP. In vivo transport of folded EGFP by the pH/TAT-dependent pathway in chloroplasts of Arabidopsis thaliana. J Exp Bot. 2004;55(403):1697–1706. http://dx.doi.org/10.1093/jxb/erh191

Schattat M, Klösgen R. Induction of stromule formation by extracellular sucrose and glucose in epidermal leaf tissue of Arabidopsis thaliana. BMC Plant Biol. 2011;11(1):115. http://dx.doi.org/10.1186/1471-2229-11-115

Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T. A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology. 2010;401(1):6–17. http://dx.doi.org/10.1016/j.virol.2010.02.011

Krenz B, Jeske H, Kleinow T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Front Plant Sci. 2012;3:291. http://dx.doi.org/10.3389/fpls.2012.00291

Mueller SJ, Lang D, Hoernstein SNW, Lang EGE, Schuessele C, Schmidt A, et al. Quantitative analysis of the mitochondrial and plastid proteomes of the moss Physcomitrella patens reveals protein macrocompartmentation and microcompartmentation. Plant Physiol. 2014;164(4):2081–2095. http://dx.doi.org/10.1104/pp.114.235754

Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, et al. A comprehensive mutational analysis of the Arabidopsis resistance protein RPW8.2 reveals key amino acids for defense activation and protein targeting. Plant Cell. 2013;25(10):4242–4261. http://dx.doi.org/10.1105/tpc.113.117226

Breuers FKH, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, et al. Dynamic remodeling of the plastid envelope membranes – a tool for chloroplast envelope in vivo localizations. Front Plant Sci. 2012;3:7. http://dx.doi.org/10.3389/fpls.2012.00007

Kwok EY, Hanson MR. Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep. 2004;23(4):188–195. http://dx.doi.org/10.1007/s00299-004-0824-9

Machettira AB, Groß LE, Tillmann B, Weis BL, Englich G, Sommer MS, et al. Protein-induced modulation of chloroplast membrane morphology. Front Plant Sci. 2012;2:118. http://dx.doi.org/10.3389/fpls.2011.00118

Oparka KJ. Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci. 2004;9(1):33–41. http://dx.doi.org/10.1016/j.tplants.2003.11.001

Blackman LM, Boevink P, Cruz SS, Palukaitis P, Oparka KJ. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell. 1998;10(4):525–538.

Schattat MH, Griffiths S, Mathur N, Barton K, Wozny MR, Dunn N, et al. Differential coloring reveals that plastids do not form networks for exchanging macromolecules. Plant Cell. 2012;24(4):1465–1477. http://dx.doi.org/10.1105/tpc.111.095398

Schattat MH, Klösgen RB, Mathur J. New insights on stromules: stroma filled tubules extended by independent plastids. Plant Signal Behav. 2012;7(9):1132–1137. http://dx.doi.org/10.4161/psb.21342

Hanson MR, Sattarzadeh A. Trafficking of proteins through plastid stromules. Plant Cell. 2013;25(8):2774–2782. http://dx.doi.org/10.1105/tpc.113.112870

Mathur J, Barton KA, Schattat MH. Fluorescent protein flow within stromules. Plant Cell. 2013;25(8):2771–2772. http://dx.doi.org/10.1105/tpc.113.117416

Itoh RD, Yamasaki H, Septiana A, Yoshida S, Fujiwara MT. Chemical induction of rapid and reversible plastid filamentation in Arabidopsis thaliana roots. Physiol Plant. 2010;139(2):144–158. http://dx.doi.org/10.1111/j.1399-3054.2010.01352.x

Lohse S. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of Medicago truncatula. Plant Physiol. 2005;139(1):329–340. http://dx.doi.org/10.1104/pp.105.061457

Gray JC, Hansen MR, Shaw DJ, Graham K, Dale R, Smallman P, et al. Plastid stromules are induced by stress treatments acting through abscisic acid: stress induction of plastid stromules. Plant J. 2012;69(3):387–398. http://dx.doi.org/10.1111/j.1365-313X.2011.04800.x

Shalla TA. Assembly and aggregation of tobacco mosaic virus in tomato leaflets. J Cell Biol. 1964;21:253–264.

Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell. 2008;132(3):449–462. http://dx.doi.org/10.1016/j.cell.2007.12.031

Esau K. Anatomical and cytological studies on beet mosaic. J Agric Res. 1944;69:95–117.

Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–454. http://dx.doi.org/10.1104/pp.108.121038

Miozzi L, Napoli C, Sardo L, Accotto GP. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS ONE. 2014;9(2):e89951. http://dx.doi.org/10.1371/journal.pone.0089951

Newell CA, Natesan SKA, Sullivan JA, Jouhet J, Kavanagh TA, Gray JC. Exclusion of plastid nucleoids and ribosomes from stromules in tobacco and Arabidopsis: absence of nucleoids and ribosomes from stromules. Plant J. 2012;69(3):399–410. http://dx.doi.org/10.1111/j.1365-313X.2011.04798.x

Kwok EY. GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot. 2004;55(397):595–604. http://dx.doi.org/10.1093/jxb/erh062

Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol. 2008;148(1):142–155. http://dx.doi.org/10.1104/pp.108.122770

Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot. 2014;65(14):3799–3811. http://dx.doi.org/10.1093/jxb/eru039




DOI: https://doi.org/10.5586/asbp.2014.050

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society