Paulinella chromatophora – rethinking the transition from endosymbiont to organelle

Eva C.M. Nowack

Abstract


Eukaryotes co-opted photosynthetic carbon fixation from prokaryotes by engulfing a cyanobacterium and stably integrating it as a photosynthetic organelle (plastid) in a process known as primary endosymbiosis. The sheer complexity of interactions between a plastid and the surrounding cell that started to evolve over 1 billion years ago, make it challenging to reconstruct intermediate steps in organelle evolution by studying extant plastids. Recently, the photosynthetic amoeba Paulinella chromatophora was identified as a much sought-after intermediate stage in the evolution of a photosynthetic organelle. This article reviews the current knowledge on this unique organism. In particular it describes how the interplay of reductive genome evolution, gene transfers, and trafficking of host-encoded proteins into the cyanobacterial endosymbiont contributed to transform the symbiont into a nascent photosynthetic organelle. Together with recent results from various other endosymbiotic associations a picture emerges that lets the targeting of host-encoded proteins into bacterial endosymbionts appear as an early step in the establishment of an endosymbiotic relationship that enables the host to gain control over the endosymbiont.

Keywords


organellogenesis; plastid evolution; endosymbiosis; cyanobacterium; photosynthesis; chromatophore; protein targeting; Rhizaria

Full Text:

PDF

References


Dorrell RG, Howe CJ. What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci. 2012;125(8):1865–1875. http://dx.doi.org/10.1242/jcs.102285

Dyall SD, Brown MT, Johnson PJ. Ancient invasions: from endosymbionts to organelles. Science. 2004;304(5668):253–257. http://dx.doi.org/10.1126/science.1094884

Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA. 2011;108(33):13624–13629. http://dx.doi.org/10.1073/pnas.1110633108

Weber A, Flügge UI. Interaction of cytosolic and plastidic nitrogen metabolism in plants. J Exp Bot. 2002;53(370):865–874. http://dx.doi.org/10.1093/jexbot/53.370.865

Balk J, Lobréaux S. Biogenesis of iron–sulfur proteins in plants. Trends Plant Sci. 2005;10(7):324–331. http://dx.doi.org/10.1016/j.tplants.2005.05.002

Wang Z, Benning C. Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochem Soc Trans. 2012;40(2):457–463. http://dx.doi.org/10.1042/BST20110752

Lichtenthaler HK, Schwender J, Disch A, Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997;400(3):271–274. http://dx.doi.org/10.1016/S0014-5793(96)01404-4

Herrmann KM, Weaver LM. The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol. 1999;50(1):473–503. http://dx.doi.org/10.1146/annurev.arplant.50.1.473

Hanson AD, Gregory III JF. Synthesis and turnover of folates in plants. Curr Opin Plant Biol. 2002;5(3):244–249. http://dx.doi.org/10.1016/S1369-5266(02)00249-2

Witz S, Jung B, Fürst S, Möhlman T. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis. Plant Cell. 2012;24(4):1549–1559. http://dx.doi.org/10.1105/tpc.112.096743

Maurino VG, Peterhansel C. Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol. 2010;13(3):248–255. http://dx.doi.org/10.1016/j.pbi.2010.01.006

Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA. 2002;99(19):12246–12251. http://dx.doi.org/10.1073/pnas.182432999

Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5(2):123–135. http://dx.doi.org/10.1038/nrg1271

Schleiff E, Becker T. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol. 2011;12(1):48–59. http://dx.doi.org/10.1038/nrm3027

Flügge UI, Häusler RE, Ludewig F, Gierth M. The role of transporters in supplying energy to plant plastids. J Exp Bot. 2011;62(7):2381–2392. http://dx.doi.org/10.1093/jxb/erq361

Weber AP. Solute transporters as connecting elements between cytosol and plastid stroma. Curr Opin Plant Biol. 2004;7(3):247–253. http://dx.doi.org/10.1016/j.pbi.2004.03.008

Pick TR, Weber APM. Unknown components of the plastidial permeome. Front Plant Sci. 2014;5:410. http://dx.doi.org/10.3389/fpls.2014.00410

Chi W, Sun X, Zhang L. Intracellular signaling from plastid to nucleus. Annu Rev Plant Biol. 2013;64(1):559–582. http://dx.doi.org/10.1146/annurev-arplant-050312-120147

Barkan A. Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol. 2011;155(4):1520–1532. http://dx.doi.org/10.1104/pp.110.171231

Miyagishima S. Mechanism of plastid division: from a bacterium to an organelle. Plant Physiol. 2011;155(4):1533–1544. http://dx.doi.org/10.1104/pp.110.170688

Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19(2):R81–R88. http://dx.doi.org/10.1016/j.cub.2008.11.067

Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59(1):491–517. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092915

Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, et al. The highly reduced genome of an enslaved algal nucleus. Nature. 2001;410(6832):1091–1096. http://dx.doi.org/10.1038/35074092

Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA. 2006;103(25):9566–9571. http://dx.doi.org/10.1073/pnas.0600707103

Marin B, Nowack ECM, Melkonian M. A plastid in the making: evidence for a second primary endosymbiosis. Protist. 2005;156(4):425–432. http://dx.doi.org/10.1016/j.protis.2005.09.001

Nowack ECM, Grossman AR. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. Proc Natl Acad Sci USA. 2012;109(14):5340–5345. http://dx.doi.org/10.1073/pnas.1118800109

Nowack ECM, Melkonian M, Glöckner G. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol. 2008;18(6):410–418. http://dx.doi.org/10.1016/j.cub.2008.02.051

Lauterborn R. Protozoenstudien. Z Wiss Zool. 1895;59:537–544.

Melkonian M. Robert Lauterborn (1869–1952) and his Paulinella chromatophora. Protist. 2005;156(2):253–262. http://dx.doi.org/10.1016/j.protis.2005.06.001

Pankow H. Paulinella chromatophora Lauterb., eine bisher nur im Süßwasser nachgewiesene Thekamöbe, in den Boddengewässern des Darß and des Zingst (südliche Ostsee). Arch Protistenkd. 1982;126(3):261–263. http://dx.doi.org/10.1016/S0003-9365(82)80036-5

Geitler L. Bemerkungen zu Paulinella chromatophora. Zool Anz. 1927;72:333–334.

Penard E. Notes sur quelques Sarcodinés – 12. Paulinella chromatophora Lauterborn. Rev Suisse Zool. 1905;13:585–616.

Hoogenraad HR. Zur Kenntnis der Fortpflanzung von Paulinella chromatophora Lauterb. Zool Anz. 1927;72:140–150.

Brown JM. Freshwater rhizopods from the English lake district. Zool J Linn Soc. 1910;30(201):360–368. http://dx.doi.org/10.1111/j.1096-3642.1910.tb02142.x

Lackey JB. Some fresh water protozoa with blue chromatophores. Biol Bull. 1936;71(3):492–497.

Yoon HS, Nakayama T, Reyes-Prieto A, Andersen RA, Boo SM, Ishida KI, et al. A single origin of the photosynthetic organelle in different Paulinella lineages. BMC Evol Biol. 2009;9(1):98. http://dx.doi.org/10.1186/1471-2148-9-98

Nicholls KH. Six new marine species of the genus Paulinella (Rhizopoda: Filosea, or Rhizaria: Cercozoa). J Mar Biol Assoc UK. 2009;89(07):1415–1425. http://dx.doi.org/10.1017/S0025315409000514

Melkonian M, Surek B. Famous algal isolates from the Spessart forest (Germany): the legacy of Dieter Mollenhauer. Algol Stud. 2009;129(1):1–23. http://dx.doi.org/10.1127/1864-1318/2009/0129-0001

Hannah F, Rogerson A, Anderson OR. A description of Paulinella indentata n. sp. (Filosea: Euglyphina) from subtidal coastal benthic sediments. J Eukaryot Microbiol. 1996;43(1):1–4. http://dx.doi.org/10.1111/j.1550-7408.1996.tb02464.x

Johnson PW, Hargraves PE, Sieburth JM. Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919, (Chrysophyceae) and its redescription as a testate rhizopod, Paulinella ovalis n. comb. (Filosea: Euglyphina). J Protozool. 1988;35(4):618–626. http://dx.doi.org/10.1111/j.1550-7408.1988.tb04160.x

Kies L. Electron microscopical investigations on Paulinella chromatophora Lauterborn, a thecamoeba containing blue-green endosymbionts (Cyanelles). Protoplasma. 1974;80(1):69–89.

Nomura M, Nakayama T, Ishida K. Detailed process of shell construction in the photosynthetic testate amoeba Paulinella chromatophora (Euglyphid, Rhizaria). J Eukaryot Microbiol. 2014;61(3):317–321. http://dx.doi.org/10.1111/jeu.12102

Kies L, Kremer BP. Function of cyanelles in the thecamoeba Paulinella chromatophora. Naturwissenschaften. 1979;66(11):578–579. http://dx.doi.org/10.1007/BF00368819

Bhattacharya D, Helmchen T, Melkonian M. Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphina and the Chlorarachniophyta. J Eukaryot Microbiol. 1995;42(1):65–69. http://dx.doi.org/10.1111/j.1550-7408.1995.tb01541.x

Cavalier-Smith T, Chao EEY. Phylogeny and classification of phylum Cercozoa (Protozoa). Protist. 2003;154(3–4):341–358. http://dx.doi.org/10.1078/143446103322454112

Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T. Global eukaryote phylogeny: combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogenet Evol. 2007;44(1):255–266. http://dx.doi.org/10.1016/j.ympev.2006.11.001

McFadden GI, Gilson PR, Hofmann CJ, Adcock GJ, Maier UG. Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc Natl Acad Sci USA. 1994;91(9):3690–3694.

Raven JA. Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol. 2003;38(1):47–53. http://dx.doi.org/10.1080/0967026031000096245

Marin B, Nowack EC, Glöckner G, Melkonian M. The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium. BMC Evol Biol. 2007;7(1):85. http://dx.doi.org/10.1186/1471-2148-7-85

Delwiche CF, Palmer JD. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 1996;13(6):873–882.

Valentin K, Zetsche K. Structure of the Rubisco operon from the unicellular red alga Cyanidium caldarium: evidence for a polyphyletic origin of the plastids. Mol Gen Genet. 1990;222(2–3):425–430.

Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D. Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol. 2006;16(17):R670–R672. http://dx.doi.org/10.1016/j.cub.2006.08.018

McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26. http://dx.doi.org/10.1038/nrmicro2670

Tyra HM, Linka M, Weber AP, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol. 2007;8(10):R212. http://dx.doi.org/10.1186/gb-2007-8-10-r212

Berney C, Pawlowski J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc R Soc B. 2006;273(1596):1867–1872. http://dx.doi.org/10.1098/rspb.2006.3537

Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, et al. Differential gene retention in plastids of common recent origin. Mol Biol Evol. 2010;27(7):1530–1537. http://dx.doi.org/10.1093/molbev/msq032

Nakayama T, Ishida KI. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol. 2009;19(7):R284–R285. http://dx.doi.org/10.1016/j.cub.2009.02.043

Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G. Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol. 2011;28(1):407–422. http://dx.doi.org/10.1093/molbev/msq209

Andersson JO. Lateral gene transfer in eukaryotes. Cell Mol Life Sci. 2005;62(11):1182–1197. http://dx.doi.org/10.1007/s00018-005-4539-z

Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14(8):307–311. http://dx.doi.org/10.1016/S0168-9525(98)01494-2

Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8):605–618. http://dx.doi.org/10.1038/nrg2386

Larkum AWD, Lockhart PJ, Howe CJ. Shopping for plastids. Trends Plant Sci. 2007;12(5):189–195. http://dx.doi.org/10.1016/j.tplants.2007.03.011

Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot. 2011;62(6):1775–1801. http://dx.doi.org/10.1093/jxb/erq411

Becker B, Hoef-Emden K, Melkonian M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol Biol. 2008;8(1):203. http://dx.doi.org/10.1186/1471-2148-8-203

Facchinelli F, Colleoni C, Ball SG, Weber APM. Chlamydia, cyanobiont, or host: who was on top in the ménage à trois? Trends Plant Sci. 2013;18(12):673–679. http://dx.doi.org/10.1016/j.tplants.2013.09.006

Huang J, Gogarten J. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 2007;8(6):R99. http://dx.doi.org/10.1186/gb-2007-8-6-r99

Fuentes I, Karcher D, Bock R. Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus. Curr Biol. 2012;22(9):763–771. http://dx.doi.org/10.1016/j.cub.2012.03.005

Hanekamp T, Thorsness PE. Inactivation of YME2/RNA12, which encodes an integral inner mitochondrial membrane protein, causes increased escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Mol Cell Biol. 1996;16(6):2764–2771.

Lister DL, Bateman JM, Purton S, Howe CJ. DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene. 2003;316:33–38. http://dx.doi.org/10.1016/S0378-1119(03)00754-6

Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, et al. Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Physiol. 2008;148(1):328–336. http://dx.doi.org/10.1104/pp.108.119107

Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet. 2010;6(2):e1000834. http://dx.doi.org/10.1371/journal.pgen.1000834

Bhattacharya D, Price DC, Yoon HS, Yang EC, Poulton NJ, Andersen RA, et al. Single cell genome analysis supports a link between phagotrophy and primary plastid endosymbiosis. Sci Rep. 2012;2:356. http://dx.doi.org/10.1038/srep00356

Selosse M-A, Albert B, Godelle B. Reducing the genome size of organelles favours gene transfer to the nucleus. Trends Ecol Evol. 2001;16(3):135–141. http://dx.doi.org/10.1016/S0169-5347(00)02084-X

Havaux M, Guedeney G, He Q, Grossman AR. Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta. 2003;1557:21–33. http://dx.doi.org/10.1016/S0005-2728(02)00391-2

He Q, Dolganov N, Björkman O, Grossman AR. The high light-inducible polypeptides in Synechocystis PCC6 expression and function in high light. J Biol Chem. 2001;276(1):306–314. http://dx.doi.org/10.1074/jbc.M008686200

Bodył A, Mackiewicz P, Stiller JW. Comparative genomic studies suggest that the cyanobacterial endosymbionts of the amoeba Paulinella chromatophora possess an import apparatus for nuclear-encoded proteins. Plant Biol. 2010;12:639–649. http://dx.doi.org/10.1111/j.1438-8677.2009.00264.x

Mackiewicz P, Bodył A, Gagat P. Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci. 2012;131(1):1–18. http://dx.doi.org/10.1007/s12064-011-0147-7

Nowack ECM. Paulinella chromatophora – a model for the acquisition of photosynthesis by eukaryotes [PhD thesis]. Cologne: University of Cologne; 2009.

Bodył A, Mackiewicz P, Stiller JW. Early steps in plastid evolution: current ideas and controversies. Bioessays. 2009;31(11):1219–1232. http://dx.doi.org/10.1002/bies.200900073

Mackiewicz P, Bodył A. A hypothesis for import of the nuclear-encoded PsaE protein of Paulinella chromatophora (cercozoa, rhizaria) into its cyanobacterial endosymbionts/plastids via the endomembrane system. J Phycol. 2010;46(5):847–859. http://dx.doi.org/10.1111/j.1529-8817.2010.00876.x

Nanjo Y, Oka H, Ikarashi N, Kaneko K, Kitajima A, Mitsui T, et al. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-Golgi to the chloroplast through the secretory pathway. Plant Cell. 2006;18(10):2582–2592. http://dx.doi.org/10.1105/tpc.105.039891

Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, et al. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol. 2005;7(12):1224–1231. http://dx.doi.org/10.1038/ncb1330

Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A. How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays. 2007;29(12):1239–1246. http://dx.doi.org/10.1002/bies.20671

Gagat P, Bodył A, Mackiewicz P. How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies. Biol Direct. 2013;8(1):18. http://dx.doi.org/10.1186/1745-6150-8-18

Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337(6101):1546–1550. http://dx.doi.org/10.1126/science.1222700

Nakayama T, Kamikawa R, Tanifuji G, Kashiyama Y, Ohkouchi N, Archibald JM, et al. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proc Natl Acad Sci USA. 2014;111(31):11407–11412. http://dx.doi.org/10.1073/pnas.1405222111

Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG. Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol. 2004;21(8):1477–1481. http://dx.doi.org/10.1093/molbev/msh086

Cavalier-Smith T, Lee JJ. Protozoa as hosts for endosymbioses and the conversion of symbionts into organelles. J Protozool. 1985;32(3):376–379. http://dx.doi.org/10.1111/j.1550-7408.1985.tb04031.x

Theissen U, Martin W. The difference between organelles and endosymbionts. Curr Biol. 2006;16(24):R1016–R1017. http://dx.doi.org/10.1016/j.cub.2006.11.020

Bhattacharya D, Archibald JM. The difference between organelles and endosymbionts – response to Theissen and Martin. Curr Biol. 2006;16(24):R1017–R1018. http://dx.doi.org/10.1016/j.cub.2006.11.021

Bodył A, Mackiewicz P, Stiller JW. The intracellular cyanobacteria of Paulinella chromatophora: endosymbionts or organelles? Trends Microbiol. 2007;15(7):295–296. http://dx.doi.org/10.1016/j.tim.2007.05.002

Bodył A, Mackiewicz P, Gagat P. Organelle evolution: Paulinella breaks a paradigm. Curr Biol. 2012;22(9):R304–R306. http://dx.doi.org/10.1016/j.cub.2012.03.020

Wernegreen JJ. Strategies of genomic integration within insect-bacterial mutualisms. Biol Bull. 2012;223(1):112–122.

Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol. 2014;24(14):R640–R641. http://dx.doi.org/10.1016/j.cub.2014.06.038

Archibald JM. Back to the future. In: One plus one equals one: symbiosis and the evolution of complex life. Oxford: Oxford University Press; 2014. p. 157–172.

Reyes-Prieto M, Latorre A, Moya A. Scanty microbes, the “symbionelle” concept. Environ Microbiol. 2014;16(2):335–338. http://dx.doi.org/10.1111/1462-2920.12220

van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, et al. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science. 2010;327(5969):1122–1126. http://dx.doi.org/10.1126/science.1184057

Login FH, Balmand S, Vallier A, Vincent-Monegat C, Vigneron A, Weiss-Gayet M, et al. Antimicrobial peptides keep insect endosymbionts under control. Science. 2011;334(6054):362–365. http://dx.doi.org/10.1126/science.1209728

Koga R, Meng XY, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA. 2012;109(20):E1230–E1237. http://dx.doi.org/10.1073/pnas.1119212109

Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, Nakabachi A. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet. 2010;6(2):e1000827. http://dx.doi.org/10.1371/journal.pgen.1000827

Nikoh N, Nakabachi A. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol. 2009;7(1):12. http://dx.doi.org/10.1186/1741-7007-7-12

Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42(1):165–190. http://dx.doi.org/10.1146/annurev.genet.41.110306.130119

Moya A, Peretó J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote–animal symbioses. Nat Rev Genet. 2008;9(3):218–229. http://dx.doi.org/10.1038/nrg2319

Nowack ECM, Grossman AR. Evolutionary pressures and the establishment of endosymbiotic associations. In: Bakermans C, editor. Microbial evolution under extreme conditions. Berlin: De Gruyter; 2015 (in press). p. 223–246.

Nowack ECM, Melkonian M. Endosymbiotic associations within protists. Phil Trans R Soc B. 2010;365(1541):699–712. http://dx.doi.org/10.1098/rstb.2009.0188

McCutcheon JP, McDonald BR, Moran NA. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet. 2009;5(7):e1000565. http://dx.doi.org/10.1371/journal.pgen.1000565

McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104(49):19392–19397. http://dx.doi.org/10.1073/pnas.0708855104

Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 2006;314(5797):267–267. http://dx.doi.org/10.1126/science.1134196

Tamames J, Gil R, Latorre A, Peretó J, Silva FJ, Moya A. The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol. 2007;7(1):181. http://dx.doi.org/10.1186/1471-2148-7-181