A sea slug’s guide to plastid symbiosis

Jan de Vries, Cessa Rauch, Gregor Christa, Sven B. Gould


Some 140 years ago sea slugs that contained chlorophyll-pigmented granules similar to those of plants were described. While we now understand that these “green granules” are plastids the slugs sequester from siphonaceous algae upon which they feed, surprisingly little is really known about the molecular details that underlie this one of a kind animal-plastid symbiosis. Kleptoplasts are stored in the cytosol of epithelial cells that form the slug’s digestive tubules, and one would guess that the stolen organelles are acquired for their ability to fix carbon, but studies have never really been able to prove that. We also do not know how the organelles are distinguished from the remaining food particles the slugs incorporate with their meal and that include algal mitochondria and nuclei. We know that the ability to store kleptoplasts long-term has evolved only a few times independently among hundreds of sacoglossan species, but we have no idea on what basis. Here we take a closer look at the history of sacoglossan research and discuss recent developments. We argue that, in order to understand what makes this symbiosis work, we will need to focus on the animal’s physiology just as much as we need to commence a detailed analysis of the plastids’ photobiology. Understanding kleptoplasty in sacoglossan slugs requires an unbiased multidisciplinary approach.


kleptoplasty; sacoglossan slugs; photosynthesis; plastid biology; photosynthetic slugs; evolution

Full Text:



de Negri A, de Negri G. Farbstoff aus Elysia viridis. Ber Deut Chem Gesell. 1876;9:84.

Kawaguti S, Yamasu T. Electron microscopy on the symbiosis between an elysioid gastropod and chloroplasts of a green alga. Biol J Okayama Univ. 1965;11(3–4):57–65.

Trench RK. Chloroplasts as functional endosymbionts in the mollusc Tridachia crispata (Bërgh), (Opisthobranchia, Sacoglossa). Nature. 1969;222(5198):1071–1072. http://dx.doi.org/10.1038/2221071a0

Händeler K, Grzymbowski YP, Krug PJ, Wägele H. Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. Front Zool. 2009;6(1):28. http://dx.doi.org/10.1186/1742-9994-6-28

Trench RK, Boyle JE, Smith DC. The association between chloroplasts of Codium fragile and the mollusc Elysia viridis. III. Movement of photosynthetically fixed 14C in tissues of intact living E. viridis and in Tridachia crispata. Proc R Soc B. 1974;185(1081):453–464. http://dx.doi.org/10.1098/rspb.1974.0029

Trench RK. Of “leaves that crawl”: functional chloroplasts in animal cells. Symp Soc Exp Biol. 1975;(29):229–265.

Jensen KR. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol J Linn Soc. 1993;48(2):135–155. http://dx.doi.org/10.1111/j.1095-8312.1993.tb00883.x

von Ihering H. Versuch eines natürlichen Systems der Mollusken. Jahrb Dtsch Malakozool Ges. 1876;3:97–174.

Schmitt V, Händeler K, Gunkel S, Escande ML, Menzel D, Gould SB, et al. Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia). Front Zool. 2014;11(1):5. http://dx.doi.org/10.1186/1742-9994-11-5

Pierce S, Biron R, Rumpho M. Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture. J Exp Biol. 1996;199(10):2323–2330.

Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS, Bhattacharya D, et al. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc Natl Acad Sci USA. 2008;105(46):17867–17871. http://dx.doi.org/10.1073/pnas.0804968105

Wägele H, Deusch O, Handeler K, Martin R, Schmitt V, Christa G, et al. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobranchus ocellatus does not entail lateral transfer of algal nuclear genes. Mol Biol Evol. 2011;28(1):699–706. http://dx.doi.org/10.1093/molbev/msq239

Bhattacharya D, Pelletreau KN, Price DC, Sarver KE, Rumpho ME. Genome analysis of Elysia chlorotica egg DNA provides no evidence for horizontal gene transfer into the germ line of this kleptoplastic mollusc. Mol Biol Evol. 2013;30(8):1843–1852. http://dx.doi.org/10.1093/molbev/mst084

Christa G, Zimorski V, Woehle C, Tielens AGM, Wägele H, Martin WF, et al. Plastid-bearing sea slugs fix CO2 in the light but do not require photosynthesis to survive. Proc Biol Sci. 2014;281(1774):20132493. http://dx.doi.org/10.1098/rspb.2013.2493

Trench RK, Boyle JE, Smith DC. The association between chloroplasts of Codium fragile and the mollusc Elysia viridis. II. Chloroplast ultrastructure and photosynthetic carbon fixation in E. viridis. Proc R Soc B. 1973;184(1074):63–81. http://dx.doi.org/10.1098/rspb.1973.0031

Trench RK, Ohlhorst S. The stability of chloroplasts from siphonaceous algae in symbiosis with sacoglossan molluscs. New Phytol. 1976;76(1):99–109. http://dx.doi.org/10.1111/j.1469-8137.1976.tb01442.x

de Vries J, Habicht J, Woehle C, Huang C, Christa G, Wägele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5(12):2540–2548. http://dx.doi.org/10.1093/gbe/evt205

Giles KL, Sarafis V. Chloroplast survival and division in vitro. Nat New Biol. 1972;236(63):56–58. http://dx.doi.org/10.1038/newbio236056a0

de Vries J, Christa G, Gould SB. Plastid survival in the cytosol of animal cells. Trends Plant Sci. 2014;19(6):347–350. http://dx.doi.org/10.1016/j.tplants.2014.03.010

Wägele M, Johnsen G. Observations on the histology and photosynthetic performance of “solar-powered” opisthobranchs (Mollusca, Gastropoda, Opisthobranchia) containing symbiotic chloroplasts or zooxanthellae. Org Divers Evol. 2001;1(3):193–210. http://dx.doi.org/10.1078/1439-6092-00016

Taylor DL. Photosynthesis of symbiotic chloroplasts in Tridachia crispata (Bërgh). Comp Biochem Physiol Physiol. 1971;38(1):233–236. http://dx.doi.org/10.1016/0300-9629(71)90111-3

Marín A, Ros JD. The chloroplast-animal association in four Iberian sacoglossan opisthobranchs: Elysia timida, Elysia translucens, Thuridilla hopei and Bosellia mimetica. Sci Mar. 1989;53(2-3):429–440.

Mujer CV, Andrews DL, Manhart JR, Pierce SK, Rumpho ME. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. Proc Natl Acad Sci USA. 1996;93(22):12333–12338.

Pierce SK, Curtis NE, Massey SE, Bass AL, Karl SA, Finney CM. A morphological and molecular comparison between Elysia crispata and a new species of kleptoplastic sacoglossan sea slug (Gastropoda: Opisthobranchia) from the Florida Keys, USA. Mollus Res. 2006;26(1):23–38.

Christa G, Gould SB, Franken J, Vleugels M, Karmeinski D, Handeler K, et al. Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis in Costasiella with a focus on C. ocellifera (Gastropoda: Sacoglossa). J Mollus Stud. 2014. http://dx.doi.org/10.1093/mollus/eyu026

Christa G, Händeler K, Schäberle TF, König GM, Wägele H. Identification of sequestered chloroplasts in photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, Gastropoda). Front Zool. 2014;11(1):15. http://dx.doi.org/10.1186/1742-9994-11-15

Christa G, Wescott L, Schäberle TF, König GM, Wägele H. What remains after 2 months of starvation? Analysis of sequestered algae in a photosynthetic slug, Plakobranchus ocellatus (Sacoglossa, Opisthobranchia), by barcoding. Planta. 2013;237(2):559–572. http://dx.doi.org/10.1007/s00425-012-1788-6

Curtis NE, Schwartz JA, Pierce SK. Ultrastructure of sequestered chloroplasts in sacoglossan gastropods with differing abilities for plastid uptake and maintenance: chloroplast degradation in four sacoglossans. Invertebr Biol. 2010;129(4):297–308. http://dx.doi.org/10.1111/j.1744-7410.2010.00206.x

Maeda T, Hirose E, Chikaraishi Y, Kawato M, Takishita K, Yoshida T, et al. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE. 2012;7(7):e42024. http://dx.doi.org/10.1371/journal.pone.0042024

Christa G, de Vries J, Jahns P, Gould SB. Switching off photosynthesis: the dark side of sacoglossan slugs. Commun Integr Biol. 2014;7(1):e28029. http://dx.doi.org/10.4161/cib.28029

Christa G, Händeler K, Kück P, Vleugels M, Franken J, Karmeinski D, et al. Phylogenetic evidence for multiple independent origins of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda). Org Divers Evol. 2014 (in press). http://dx.doi.org/10.1007/s13127-014-0189-z

Maeda T, Kajita T, Maruyama T, Hirano Y. Molecular phylogeny of the Sacoglossa, with a discussion of gain and loss of kleptoplasty in the evolution of the group. Biol Bull. 2010;219(1):17–26.

McLean N. Phagocytosis of chloroplasts in Placida dendritica (Gastropoda: Sacoglossa). J Exp Zool. 1976;197(3):321–329. http://dx.doi.org/10.1002/jez.1401970304

Wägele H, Martin WF. Endosymbioses in sacoglossan seaslugs: plastid-bearing animals that keep photosynthetic organelles without borrowing genes. In: Löffelhardt W, editor. Endosymbiosis. Vienna: Springer; 2014. p. 291–324. http://dx.doi.org/10.1007/978-3-7091-1303-5_14

Jensen PE, Leister D. Chloroplast evolution, structure and functions. F1000Prime Rep. 2014;6(40). http://dx.doi.org/10.12703/P6-40

Zimorski V, Ku C, Martin WF, Gould SB. Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 2014;22:38–48. http://dx.doi.org/10.1016/j.mib.2014.09.008

Cavalier-Smith T. Membrane heredity and early chloroplast evolution. Trends Plant Sci. 2000;5(4):174–182. http://dx.doi.org/10.1016/S1360-1385(00)01598-3

Archibald JM. The puzzle of plastid evolution. Curr Biol. 2009;19(2):R81–R88. http://dx.doi.org/10.1016/j.cub.2008.11.067

Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Phil Trans R Soc B. 2010;365(1541):729–748. http://dx.doi.org/10.1098/rstb.2009.0103

Greene RW. Symbiosis in sacoglossan opisthobranchs: functional capacity of symbiotic chloroplasts. Mar Biol. 1970;7(2):138–142. http://dx.doi.org/10.1007/BF00354917

Kremer BP, Schmitz K. Aspects of 14CO2-fixation by endosymbiotic rhodoplasts in the marine opisthobranchiate Hermaea bifida. Mar Biol. 1976;34(4):313–316. http://dx.doi.org/10.1007/BF00398124

Hinde R. The metabolism of photosynthetically fixed carbon by isolated chloroplasts from Codium fragile (Chlorophyta: Siphonales) and by Elysia viridis (Mollusca: Sacoglossa). Biol J Linn Soc. 1978;10(3):329–342. http://dx.doi.org/10.1111/j.1095-8312.1978.tb00019.x

Clark KB, Jensen KR, Stirts HM, Fermin C. Chloroplast symbiosis in a non-elysiid mollusc, Costasiella lilianae Marcus [Hermaeidae: Ascoglossa (= Sacoglossa)]: effects of temperature, light intensity, and starvation on carbon fixation rate. Biol Bull. 1981;160(1):43–54.

Ireland C, Scheuer PJ. Photosynthetic marine mollusks: in vivo 14C incorporation into metabolites of the sacoglossan Placobranchus ocellatus. Science. 1979;205(4409):922–923. http://dx.doi.org/10.1126/science.205.4409.922

Yamamoto S, Hirano YM, Hirano YJ, Trowbridge CD, Akimoto A, Sakai A, et al. Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs. J Mar Biol Assoc UK. 2013;93(1):209–215. http://dx.doi.org/10.1017/S0025315412000628

Klochkova TA, Han JW, Chah KH, Kim RW, Kim JH, Kim KY, et al. Morphology, molecular phylogeny and photosynthetic activity of the sacoglossan mollusc, Elysia nigrocapitata, from Korea. Mar Biol. 2013;160(1):155–168. http://dx.doi.org/10.1007/s00227-012-2074-7

Trench ME, Trench RK, Muscatine L. Utilization of photosynthetic products of symbiotic chloroplasts in mucus synthesis by Placobranchus ianthobapsus (Gould), Opisthobranchia, Sacoglossa. Comp Biochem Physiol. 1970;37(1):113–117. http://dx.doi.org/10.1016/0010-406X(70)90964-3

Greene RW, Muscatine L. Symbiosis in sacoglossan opisthobranchs: photosynthetic products of animal-chloroplast associations. Mar Biol. 1972;14(3):253–259. http://dx.doi.org/10.1007/BF00348288

Evertsen J, Johnsen G. In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar Biol. 2009;156(5):847–859. http://dx.doi.org/10.1007/s00227-009-1128-y

Hawes CR, Cobb AH. The effects of starvation on the symbiotic chloroplasts in Elysia viridis: a fine structural study. New Phytol. 1980;84(2):375–379. http://dx.doi.org/10.1111/j.1469-8137.1980.tb04437.x

Gould SB, Waller RF, McFadden GI. Plastid evolution. Annu Rev Plant Biol. 2008;59(1):491–517. http://dx.doi.org/10.1146/annurev.arplant.59.032607.092915

Pelletreau KN, Weber APM, Weber KL, Rumpho ME. Lipid accumulation during the establishment of kleptoplasty in Elysia chlorotica. PLoS ONE. 2014;9(5):e97477. http://dx.doi.org/10.1371/journal.pone.0097477

Hinde R, Smith DC. The role of photosynthesis in the nutrition of the mollusc Elysia viridis. Biol J Linn Soc. 1975;7(2):161–171. http://dx.doi.org/10.1111/j.1095-8312.1975.tb00738.x

Akimoto A, Hirano YM, Sakai A, Yusa Y. Relative importance and interactive effects of photosynthesis and food in two solar-powered sea slugs. Mar Biol. 2014;161(5):1095–1102. http://dx.doi.org/10.1007/s00227-014-2402-1

Lips P. Vitamin D physiology. Prog Biophys Mol Biol. 2006;92(1):4–8. http://dx.doi.org/10.1016/j.pbiomolbio.2006.02.016

Cueto M, D’Croz L, Maté JL, San-Martín A, Darias J. Elysiapyrones from Elysia diomedea. Do such metabolites evidence an enzymatically assisted electrocyclization cascade for the biosynthesis of their bicyclo[4.2.0]octane core? Org Lett. 2005;7(3):415–418. http://dx.doi.org/10.1021/ol0477428

Díaz-Marrero AR, Cueto M, D’Croz L, Darias J. Validating an endoperoxide as a key intermediate in the biosynthesis of elysiapyrones. Org Lett. 2008;10(14):3057–3060. http://dx.doi.org/10.1021/ol8010425

Schmitt V, Wägele H. Behavioral adaptations in relation to long-term retention of endosymbiotic chloroplasts in the sea slug Elysia timida (Opisthobranchia, Sacoglossa). Thalassas. 2011;27(225):225–238.

Rahat M, Monselise EBI. Photobiology of the chloroplast hosting mollusc Elysia timida (Opisthobranchia). J Exp Biol. 1979;79(1):225–233.

Serôdio J, Cruz S, Cartaxana P, Calado R. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. Phil Trans R Soc B. 2014;369(1640):20130242. http://dx.doi.org/10.1098/rstb.2013.0242

Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395(1–2):98–105. http://dx.doi.org/10.1016/j.jembe.2010.08.021

Yong E. Solar-powered slugs are not solar-powered [Internet]. Natl Geogr. 2013 [cited 2014 Oct 28]; Available from: http://phenomena.nationalgeographic.com/2013/11/19/solar-powered-slugs-are-not-solar-powered/

Yonge CM, Nicholas AG. Structure and function of the gut and symbiosis with zooxanthellae in Tridachia crispate (Oerst.) Bgh. Pap Tortugas Lab. 1940;32:287.

Taylor DL. The pigments of the zooxanthellae symbiotic with the intertidal Anemone, Anemonia sulcata. J Phycol. 1967;3(4):238–240. http://dx.doi.org/10.1111/j.1529-8817.1967.tb04665.x

Taylor DL. Chloroplasts as symbiotic organelles in the digestive gland of Elysia viridis (Gastropoda: Opisthobranchia). J Mar Biol Assoc UK. 1968;48(01):1–15. http://dx.doi.org/10.1017/S0025315400032380

Trench RK. Chloroplasts as functional organelles in animal tissues. J Cell Biol. 1969;42(2):404–417. http://dx.doi.org/10.1083/jcb.42.2.404

Greene RW. Symbiosis in sacoglossan opisthobranchs: symbiosis with algal chloroplasts. Malacologia. 1970;10(2):357–368. http://dx.doi.org/10.1007/BF00354917

Greene RW. Symbiosis in sacoglossan opisthobranchs: translocation of photosynthetic products from chloroplast to host tissue. Malacologia. 1970;10(2):369–380.

Hinde R, Smith DC. Persistence of functional chloroplasts in Elysia viridis (Opisthobranchia, Sacoglossa). Nat New Biol. 1972;239(88):30–31. http://dx.doi.org/10.1038/newbio239030a0

Gallop A. Evidence for the presence of a “factor” in Elysia viridis which stimulates photosynthate release from its symbiotic chloroplasts. New Phytol. 1974;73(6):1111–1117. http://dx.doi.org/10.1111/j.1469-8137.1974.tb02140.x

Hinde R, Smith DC. “Chloroplast symbiosis” and the extent to which it occurs in Sacoglossa (Gastropoda: Mollusca). Biol J Linn Soc. 1974;6(4):349–356. http://dx.doi.org/10.1111/j.1095-8312.1974.tb00729.x

Clark KB, Busacca M. Feeding specificity and chloroplast retention in four tropical Ascoglossa, with a discussion of the extent of chloroplast symbiosis and the evolution of the order. J Mollus Stud. 1978;44(3):272–282.

Gallop A, Bartrop J, Smith DC. The biology of chloroplast acquisition by Elysia viridis. Proc R Soc B. 1980;207(1168):335–349. http://dx.doi.org/10.1098/rspb.1980.0027

Brandley BK. Ultrastructure of the envelope of Codium australicum (Silva) chloroplasts in the alga and after acquisition by Elysia maoria (Powell). New Phytol. 1981;89(4):679–686. http://dx.doi.org/10.1111/j.1469-8137.1981.tb02346.x

Weaver S, Clark KB. Light intensity and color preferences of five ascoglossan (= sacoglossan) molluscs (Gastropoda: Opisthobranchia): a comparison of chloroplast‐symbiotic and aposymbiotic species. Mar Behav Physiol. 1981;7(4):297–306. http://dx.doi.org/10.1080/10236248109386991

de Freese DE, Clark KB. Transepidermal uptake of dissolved free amino acids from seawater by three ascoglossan opisthobranchs. J Mollus Stud. 1991;57(suppl, pt 4):65–74. http://dx.doi.org/10.1093/mollus/57.Supplement_Part_4.65

Marín A, Ros JD. Dynamics of a peculiar plant-herbivore relationship: the photosynthetic ascoglossan Elysia timida and the chlorophycean Acetabularia acetabulum. Mar Biol. 1992;112(4):677–682. http://dx.doi.org/10.1007/BF00346186

Marín A, Ros J. Ultrastructural and ecological aspects of the development of chloroplast retention in the sacoglossan gastropod Elysia timida. J Mollus Stud. 1993;59(1):95–104. http://dx.doi.org/10.1093/mollus/59.1.95

Pierce SK, Maugel TK, Rumpho ME, Hanten JJ, Mondy WL. Annual viral expression in a sea slug population: life cycle control and symbiotic chloroplast maintenance. Biol Bull. 1999;197(1):1–6.

Green BJ. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124(1):331–342. http://dx.doi.org/10.1104/pp.124.1.331

Hanten JJ, Pierce SK. Synthesis of several light-harvesting complex I polypeptides is blocked by cycloheximide in symbiotic chloroplasts in the sea slug, Elysia chlorotica (Gould): a case for horizontal gene transfer between alga and animal? Biol Bull. 2001;201(1):34–44.

Mondy WL, Pierce SK. Apoptotic-like morphology is associated with annual synchronized death in kleptoplastic sea slugs (Elysia chlorotica). Invertebr Biol. 2003;122(2):126–137. http://dx.doi.org/10.1111/j.1744-7410.2003.tb00078.x

Green BJ, Fox TC, Rumpho ME. Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. Symbiosis. 2005;40(1):31–40.

Curtis NE, Massey SE, Pierce SK. The symbiotic chloroplasts in the sacoglossan Elysia clarki are from several algal species. Invertebr Biol. 2006;125(4):336–345. http://dx.doi.org/10.1111/j.1744-7410.2006.00065.x

Casalduero FG, Muniain C. Photosynthetic activity of the solar-powered lagoon mollusc Elysia timida (Risso, 1818) (Opisthobranchia: Sacoglossa). Symbiosis. 2006;41(3):151–158.

Evertsen J, Burghardt I, Johnsen G, Wägele H. Retention of functional chloroplasts in some sacoglossans from the Indo-Pacific and Mediterranean. Mar Biol. 2007;151(6):2159–2166. http://dx.doi.org/10.1007/s00227-007-0648-6

Pierce SK, Curtis NE, Hanten JJ, Boerner SL, Schwartz JA. Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis. 2007;43(2):57–64.

Casalduero FG, Muniain C. The role of kleptoplasts in the survival rates of Elysia timida (Risso, 1818): (Sacoglossa: Opisthobranchia) during periods of food shortage. J Exp Mar Bio Ecol. 2008;357(2):181–187. http://dx.doi.org/10.1016/j.jembe.2008.01.020

Pierce SK, Curtis NE, Schwartz JA. Chlorophyll a synthesis by an animal using transferred algal nuclear genes. Symbiosis. 2009;49(3):121–131. http://dx.doi.org/10.1007/s13199-009-0044-8

Schwartz JA, Curtis NE, Pierce SK. Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol Biol. 2010;37(1):29–37. http://dx.doi.org/10.1007/s11692-010-9079-2

Pelletreau KN, Bhattacharya D, Price DC, Worful JM, Moustafa A, Rumpho ME. Sea slug kleptoplasty and plastid maintenance in a metazoan. Plant Physiol. 2011;155(4):1561–1565. http://dx.doi.org/10.1104/pp.111.174078

Rumpho ME, Pelletreau KN, Moustafa A, Bhattacharya D. The making of a photosynthetic animal. J Exp Biol. 2011;214(2):303–311. http://dx.doi.org/10.1242/jeb.046540

Pelletreau KN, Worful JM, Sarver KE, Rumpho ME. Laboratory culturing of Elysia chlorotica reveals a shift from transient to permanent kleptoplasty. Symbiosis. 2012;58(1–3):221–232. http://dx.doi.org/10.1007/s13199-012-0192-0

Pierce SK, Fang X, Schwartz JA, Jiang X, Zhao W, Curtis NE, et al. Transcriptomic evidence for the expression of horizontally transferred algal nuclear genes in the photosynthetic sea slug, Elysia chlorotica. Mol Biol Evol. 2012;29(6):1545–1556. http://dx.doi.org/10.1093/molbev/msr316