AtDeg2 – a chloroplast protein with dual protease/chaperone activity

Przemysław Jagodzik, Małgorzata Adamiec, Grzegorz Jackowski

Abstract


Chloroplast protease AtDeg2 (an ATP-independent serine endopeptidase) is cytosolically synthesized as a precursor, which is imported into the chloroplast stroma and deprived of its transit peptide. Then the mature protein undergoes routing to its functional location at the stromal side of thylakoid membrane. In its linear structure AtDeg2 molecule contains the protease domain with catalytic triad (HDS) and two PDZ domains (PDZ1 and PDZ2). In vivo AtDeg2 most probably exists as a supposedly inactive haxamer, which may change its oligomeric stage to form active 12-mer, or 24-mer. AtDeg2 has recently been demonstrated to exhibit dual protease/chaperone function. This review is focused on the current awareness with regard to AtDeg2 structure and functional significance.

Keywords


AtDeg2; chaperone; chloroplast; hexamer; protease; PDZ domain

Full Text:

PDF

References


Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol. 2009;160(9):652–659. http://dx.doi.org/10.1016/j.resmic.2009.08.011

Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R, Ehrmann M, et al. Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat Struct Mol Biol. 2011;18(6):728–731. http://dx.doi.org/10.1038/nsmb.2055

Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 2002;10(3):443–455. http://dx.doi.org/10.1016/S1097-2765(02)00658-5

Lipinska B, Sharma S, Georgopoulos C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 1988;16(21):10053–10067. http://dx.doi.org/10.1093/nar/16.21.10053

Strauch KL, Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA. 1988;85(5):1576–1580. http://dx.doi.org/10.1073/pnas.85.5.1576

Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell. 2004;117(4):483–494. http://dx.doi.org/10.1016/S0092-8674(04)00454-4

Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, et al. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA. 2008;105(33):11939–11944. http://dx.doi.org/10.1073/pnas.0805464105

Bai XC, Pan XJ, Wang XJ, Ye YY, Chang LF, Leng D, et al. Characterization of the structure and function of Escherichia coli DegQ as a representative of the DegQ-like proteases of bacterial HtrA family proteins. Structure. 2011;19(9):1328–1337. http://dx.doi.org/10.1016/j.str.2011.06.013

Skórko-Glonek J, Krzewski K, Lipińska B, Bertoli E, Tanfani F. Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J Biol Chem. 1995;270(19):11140–11146. http://dx.doi.org/10.1074/jbc.271.52.33502

Spiess C, Beil A, Ehrmann M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell. 1999;97(3):339–347. http://dx.doi.org/10.1016/S0092-8674(00)80743-6

Huesgen PF, Schuhmann H, Adamska I. The family of Deg proteases in cyanobacteria and chloroplasts of higher plants. Physiol Plant. 2005;123(4):413–420. http://dx.doi.org/10.1111/j.1399​-3054.2005.00458.x

Schuhmann H, Huesgen PF, Adamska I. The family of Deg/HtrA proteases in plants. BMC Plant Biol. 2012;12(1):52. http://dx.doi.org/10.1186/1471-2229-12-52

Schuhmann H, Adamska I. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol Plant. 2012;145(1):224–234. http://dx.doi.org/10.1111/j.1399-3054.2011.01533.x

Sun R, Fan H, Gao F, Lin Y, Zhang L, Gong W, et al. Crystal structure of Arabidopsis Deg2 protein reveals an internal PDZ ligand locking the hexameric resting state. J Biol Chem. 2012;287(44):37564–37569. http://dx.doi.org/10.1074/jbc.M112.394585

Haussuhl K, Andersson B, Adamska I. A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J. 2001;20(4):713–722. http://dx.doi.org/10.1093/emboj/20.4.713

Ferro M, Brugiere S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics. 2010;9(6):1063–1084. http://dx.doi.org/10.1074/mcp.M900325-MCP200

Luciński R, Misztal L, Samardakiewicz S, Jackowski G. The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 in Arabidopsis thaliana. New Phytol. 2011;192(1):74–86. http://dx.doi.org/10.1111/j.1469-8137.2011.03782.x

Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–W248. http://dx.doi.org/10.1093/nar/gki408

Ströher E, Dietz KJ. The dynamic thiol–disulphide redox proteome of the Arabidopsis thaliana chloroplast as revealed by differential electrophoretic mobility. Physiol Plant. 2008;133(3):566–583. http://dx.doi.org/10.1111/j.1399-3054.2008.01103.x

Huesgen PF, Schuhmann H, Adamska I. Photodamaged D1 protein is degraded in Arabidopsis mutants lacking the Deg2 protease. FEBS Lett. 2006;580(30):6929–6932. http://dx.doi.org/10.1016/j.febslet.2006.11.058

Sun X, Ouyang M, Guo J, Ma J, Lu C, Adam Z, et al. The thylakoid protease Deg1 is involved in photosystem-II assembly in Arabidopsis thaliana: chaperone function of Deg1. Plant J. 2010;62(2):240–249. http://dx.doi.org/10.1111/j.1365-313X.2010.04140.x

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, et al. A gene expression map of Arabidopsis thaliana development. Nat Genet. 2005;37(5):501–506. http://dx.doi.org/10.1038/ng1543

Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed: molecular profiling in Arabidopsis seed. Plant J. 2005;41(5):697–709. http://dx.doi.org/10.1111/j.1365-313X.2005.02337.x

Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res. 2011;39:D1118–D1122. http://dx.doi.org/10.1093/nar/gkq1120

Hehl R, Bülow L. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana. In: Staiger D, editor. Plant circadian networks. New York, NY: Springer New York; 2014. p. 139–156. (Methods in Molecular Biology; vol 1158). http://dx.doi.org/10.1007/978-1-4939-0700-7_9

Hwang I, Sheen J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature. 2001;413(6854):383–389. http://dx.doi.org/10.1038/35096500

Jeong MJ, Shih MC. Interaction of a GATA factor with cis-acting elements involved in light regulation of nuclear genes encoding chloroplast glyceraldehyde-3-phosphate dehydrogenase in Arabidopsis. Biochem Biophys Res Commun. 2003;300(2):555–562. http://dx.doi.org/10.1016/S0006-291X(02)02892-9

Shaikhali J, de Dios Barajas-Lopez J, Otvos K, Kremnev D, Garcia AS, Srivastava V, et al. The CRYPTOCHROME1-dependent response to excess light is mediated through the transcriptional activators ZINC FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM LIKE1 and ZML2 in Arabidopsis. Plant Cell. 2012;24(7):3009–3025. http://dx.doi.org/10.1105/tpc.112.100099

Benlloch R, Kim MC, Sayou C, Thévenon E, Parcy F, Nilsson O. Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1. Plant J. 2011;67(6):1094–1102. http://dx.doi.org/10.1111/j.1365-313X.2011.04660.x

Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 2008;582(6):943–948. http://dx.doi.org/10.1016/j.febslet.2008.02.037

Doherty CJ, van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21(3):972–984. http://dx.doi.org/10.1105/tpc.108.063958

Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol. 2012;158(4):1847–1859. http://dx.doi.org/10.1104/pp.111.192310

Zhang K, Gan SS. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol. 2012;158(2):961–969. http://dx.doi.org/10.1104/pp.111.190876

Welsch R, Maass D, Voegel T, DellaPenna D, Beyer P. Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol. 2007;145(3):1073–1085. http://dx.doi.org/10.1104/pp.107.104828

Sinvany-Villalobo G, Davydov O, Ben-Ari G, Zaltsman A, Raskind A, Adam Z. Expression in multigene families. Analysis of chloroplast and mitochondrial proteases. Plant Physiol. 2004;135(3):1336–1345. http://dx.doi.org/10.1104/pp.104.043299

Adamiec M, Luciński R, Jackowski G. The irradiance dependent transcriptional regulation of AtCLPB3 expression. Plant Sci. 2011;181(4):449–456. http://dx.doi.org/10.1016/j.plantsci.2011.07.004

Zheng B, Halperin T, Hruskova-Heidingsfeldova O, Adam Z, Clarke AK. Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses. Physiol Plant. 2002;114(1):92–101. http://dx.doi.org/10.1034/j.1399-3054.2002.1140113.x

Żelisko A, Jackowski G. Senescence-dependent degradation of Lhcb3 is mediated by a thylakoid membrane-bound protease. J Plant Physiol. 2004;161(10):1157–1170. http://dx.doi.org/10.1016/j.jplph.2004.01.006