Alisma plantago-aquatica L.: the cytoskeleton of the suspensor development

Joanna Świerczyńska, Jerzy Bohdanowicz

Abstract


The actin and the tubulin cytoskeleton organization during the differentiation of the embryo-suspensor in Alisma plantago-aquatica was studied in comparison with the development of embryo, using immunofluorescence detection and rhodamine-phalloidin assay. At the early stage of the suspensor basal cell development (from 2- to ~10-celled embryos) microfilaments form an abundant network in the cytoplasm of the basal cell, while the microtubules form a delicate network. At the mature stage of development (from a dozen to several dozen-celled embryos), in the suspensor basal cell, the microfilaments and microtubules were localized from micropylar to chalazal pole of the cell. At the micropylar end of the basal cell a high amount of actin and tubulin material was observed. The microfilaments were mainly arranged parallel whereas numerous bundles of microtubules distributed longitudinally or transversally to the long axis of the cell. At this stage of basal cell functioning, some bundles of microtubules appeared to pass close to the nucleus surface. Microtubules were also observed distributed at the chalazal pole of the basal cell. At the senescence stage of the suspensor basal cell (>100-celled embryos) the actin and tubulin filaments disorganize, some disrupted microfilaments and microtubules were observed in the cytoplasm of the basal cell. At all stages of the suspensor basal cell development in the embryo cells an extensive actin and tubulin network was observed.

Keywords


microfilaments; microtubules; immunofluorescence; Alisma plantago-aquatica; embryo-suspensor

Full Text:

PDF

References


Raghavan V. Embryogenesis in Angiosperms. A development and experimental study. Cambrige: Cambrige University Press; 1986.

Bohdanowicz J. Alisma embryogenesis: the development and ultrastructure of the suspensor. Protoplasma. 1987;137(2–3):71–83. http://dx.doi.org/10.1007/BF01281143

Kozieradzka-Kiszkurno M, Bohdanowicz J. Development and cytochemistry of the embryo suspensor in Sedum. Acta Biol Cracov Ser Bot. 2006;48(2):67–72.

Yeung EC, Clutter ME. Embryogeny of Phaseolus coccineus: the ultrastructure and development of the suspensor. Can J Bot. 1979;57(2):120–136. http://dx.doi.org/10.1139/b79-021

Cremonini R, Cionini PG. Extra DNA synthesis in embryo suspensor cells of Phaseolus coccineus. Protoplasma. 1977;91(3):303–313. http://dx.doi.org/10.1007/BF01281953

Singh MB, Bhalla PL, Malik CP. Activity of some hydrolytic enzymes in autolysis of the embryo suspensor in Tropaeolum majus L. Ann Bot. 1980;45(5):523–527.

Yeung EC, Meinke DW. Embryogenesis in Angiosperms: development of the suspensor. Plant Cell. 1993;5(10):1371. http://dx.doi.org/10.2307/3869789

Schwartz BW, Vernon DM, Meinke DW. Development of the suspensor: differentiation, communication, and programmed cell death during plant embryogenesis. In: Larkins BA, Vasil IK, editors. Cellular and molecular biology of plant seed development. Dordrecht: Springer Netherlands; 1997. p. 53–72. http://dx.doi.org/10.1007/978-94-015-8909-3_2

Gunning BES, Pate JS. Transfer cells. In: Robards AW, editor. Dynamic aspects of plant ultrastructure. London: McGraw-Hill; 1974. p. 441–480.

Talbot MJ, Offler CE, McCurdy DW. Transfer cell wall architecture: a contribution towards understanding localized wall deposition. Protoplasma. 2002;219(3–4):197–209. http://dx.doi.org/10.1007/s007090200021

Kozieradzka-Kiszkurno M, Świerczyńska J, Bohdanowicz J. Embryogenesis in Sedum acre L.: structural and immunocytochemical aspects of suspensor development. Protoplasma. 2011;248(4):775–784. http://dx.doi.org/10.1007/s00709-010-0248-z

Nagl W. Endopoliploidy and polyteny in differentiation and evolution. Amsterdam: Oxford North-Holland Publishing Company; 1978.

D’Amato F. Polyploidy in cell differentiation. Caryologia. 1989;42(3–4):

–211. http://dx.doi.org/10.1080/00087114.1989.10796966

Brady T. Feulgen cytophotometric determination of the DNA content of the embryo proper and suspensor cells of Phaseolus coccineus. Cell Diff. 1973;2(2):65–75. http://dx.doi.org/10.1016/0045-6039(73)90022-5

Nagl W. Early embryogenesis in Tropaeolum majus L.: ultrastructure of the embryo-suspensor. Bioch Physiol Pflanz. 1976;170:253–260.

Bohdanowicz J. Karyological anatomy of the suspensor in Alisma L. I. Alisma plantago-aquatica L. Acta Biol Cracov Ser Bot. 1973;16:235–248.

Świerczyńska J, Bohdanowicz J. The cytoskeleton of the embryo-suspensor in Gagea lutea (L.) Ker Gawl. Acta Biol Cracov Ser Bot. 2008;50(1 suppl):73.

Świerczyńska J, Bohdanowicz J. The immunocytochemical studies of the embryo-suspensor in Gagea lutea (L.) Ker-Gawl. Acta Biol Crac Ser Bot. 2010;52(1 suppl):41.

Świerczyńska J, Bohdanowicz J. The cytoskeleton of the embryo-suspensor in Phaseolus coccineus L. Acta Biol Crac Ser Bot. 2012;52(1 suppl):83.

Sonobe S, Shibaoka H. Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment with m-maleimidobenzoyl N-hydroxysuccinimide ester. Protoplasma. 1989;148(2–3):80–86. http://dx.doi.org/10.1007/BF02079325

Huang BQ, Russell SD. Fertilization in Nicotiana tabacum: cytoskeletal modifications in the embryo sac during synergid degeneration: a hypothesis for short-distance transport of sperm cells prior to gamete fusion. Planta. 1994;194(2):200–214. http://dx.doi.org/10.1007/BF01101679

Traas JA, Doonan JH, Rawlins DJ, Shaw PJ, Watts J, Lloyd CW. An actin network is present in the cytoplasm throughout the cell cycle of carrot cells and associates with the dividing nucleus. J Cell Biol. 1987;105(1):387–395. http://dx.doi.org/10.1083/jcb.105.1.387

Świerczyńska J, Bohdanowicz J. Microfilament cytoskeleton of endosperm chalazal haustorium of Rhinanthus serotinus (Scrophulariaceae). Acta Biol Crac Ser Bot. 2003;45(1):143–148.

Bohdanowicz J, Szczuka E, Świerczyńska J, Sobieska J, Kościńska-Pająk M. The distribution of microtubules during regular and disturbed microsporogenesis and pollen grain development in Gagea lutea (L.) Ker.-Gaw. Acta Biol Crac Ser Bot. 2005;47:89–96.

Brown RC, Lemmon BE, Mullinax JB. Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using polyethylene glycol (PEG) and Steedman’s wax. Bot Acta. 1989;102(1):54–61. http://dx.doi.org/10.1111/j.1438-8677.1989.tb00067.x

Vitha S, Baluška F, Jasik J, Volkmann D, Barlow PW. Steedman’s wax for F-actin visualization. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW, editors. Actin: a dynamic framework for multiple plant cell functions. Dordrecht: Springer Netherlands; 2000. p. 619–636. http://dx.doi.org/10.1007/978-94-015-9460-8_35

Maheshwari P. An introduction to the embryology of angiosperms. New York, NY: McGrraw-Hill; 1950.

Kozieradzka-Kiszkurno M, Płachno BJ, Bohdanowicz J. New data about the suspensor of succulent angiosperms: ultrastructure and cytochemical study of the embryo-suspensor of Sempervivum arachnoideum L. and Jovibarba sobolifera (Sims) Opiz. Protoplasma. 2012;249(3):613–624. http://dx.doi.org/10.1007/s00709-011-0297-y

Brodsky VY, Uryvaeva IV. Genome multiplication in growth and development. Biology of polyploid and polytene cells. London: Cambridge University Press; 1985.

Nagl W. Polyploidy in differentiation and evolution. Inter J Cell Clon. 1990;8(4):216–223. http://dx.doi.org/10.1002/stem.5530080404

Joubès J, Chevalier C. Endoreduplication in higher plants. Plant Mol Biol. 2000;43(5–6):735–745. http://dx.doi.org/10.1023/A:1006446417196

Willemse MTM, van Lammeren AAM. Structure and function of the microtubular cytoskeleton during megasporogenesis and embryo sac development in Gasteria verrucosa (Mill.) H. Duval. Sex Plant Reprod. 1988;82:631–634.

Bednara J, Willemse MTM, van Lammeren AAM. Organization of the actin cytoskeleton during megasporogenesis in Gasteria verrucosa visualized with fluorescent-labelled phalloidin. Acta Bot Neerl. 1990;39:43–48.

Zee SY, Ye XL. Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis in Cymbidium sinense. Protoplasma. 1995;185(3–4):170–177. http://dx.doi.org/10.1007/BF01272857

Huang BQ, Ye. XL, Yeung E, Zee SY. Embryology of Cymbidium sinense: the microtubule organization of early embryos. Ann Bot. 1998;81(6):741–750. http://dx.doi.org/10.1006/anbo.1998.0628

Tung SH, Ye XL, Yeung EC, Zee SY. Ultrastructural aspects of megasporogenesis in Cymbidium sinensie (Orchidaceae). Lindleyana. 1999;14:178–192.

Tung SH, Ye XL, Zee SY, Yeung EC. The microtubular cytoskeleton during megasporogenesis in the nun orchid, Phaius tankervillae. New Phytol. 2000;146(3):503–513. http://dx.doi.org/10.1046/j.1469-8137.2000.00656.x

Ye XL, Zee SY, Yeung EC. Suspensor development in the nun orchid Phaius tankervilliae. Inter J Plant Sci. 1997;162:1053–1063.

Płachno BJ, Świątek P, Kozieradzka-Kiszkurno M. The F-actin cytoskeleton in syncytia from non-clonal progenitor cells. Protoplasma. 2011;248(3):623–629. http://dx.doi.org/10.1007/s00709-010-0209-6

Świerczyńska J, Kozieradzka-Kiszkurno M, Bohdanowicz J. Rhinanthus serotinus (Schönheit) Oborny (Scrophulariaceae): immunohistochemical and ultrastructural studies of endosperm chalazal haustorium development. Protoplasma. 2013;250(6):1369–1380. http://dx.doi.org/10.1007/s00709-013-0520-0

Thompson RD, Hueros G, Becker HA, Maitz M. Development and functions of seed transfer cells. Plant Sci. 2001;160(5):775–783. http://dx.doi.org/10.1016/S0168-9452(01)00345-4

Płachno BJ, Świątek P, Sas-Nowosielska H, Kozieradzka-Kiszkurno M. Organisation of the endosperm and endosperm–placenta syncytia in bladderworts (Utricularia, Lentibulariaceae) with emphasis on the microtubule arrangement. Protoplasma. 2013;250(4):863–873. http://dx.doi.org/10.1007/s00709-012-0468-5

Offler CE, McCurdy DW, Patrick JW, Talbot MJ. Transfer cells: cells specialized for a special purpose. Ann Rev Plant Biol. 2003;54(1):431–454. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134812

Kamal A, Goldstein LSB. Connecting vesicle transport to the cytoskeleton. Curr Opin Cell Biol. 2000;12(4):503–508. http://dx.doi.org/10.1016/S0955-0674(00)00123-X

Verchot-Lubicz J, Goldstein RE. Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma. 2010;240(1–4):99–107. http://dx.doi.org/10.1007/s00709-009-0088-x

Muench DG, Park NI. Messages on the move: the role of the cytoskeleton in mRNA localization and translation in plant cells. Can J Bot. 2006;84(4):572–580. http://dx.doi.org/10.1139/b05-167

Guo F, Yu L, Watkins S, Han Y. Orientation of microtubules suggests a role in mRNA transportation in fertilized eggs of Chinese pine (Pinus tabulaeformis). Protoplasma. 2007;231(3–4):239–243. http://dx.doi.org/10.1007/s00709-007-0266-7

Zarnack K, Feldbrugge M. Microtubule-dependent mRNA transport in fungi. Eukaryot Cell. 2010;9(7):982–990. http://dx.doi.org/10.1128/EC.00030-10

Giuliani C, Consonni G, Gavazzi G, Colombo M, Dolfini S. Programmed cell death during embryogenesis in maize. Ann Bot. 2002;90(2):287–292. http://dx.doi.org/10.1093/aob/mcf173

Bozhkov PV, Filonova LH, Suarez MF. Programmed cell death in plant embryogenesis. Curr Top Dev Biol. 2005;67:135–179. http://dx.doi.org/10.1016/S0070-2153(05)67004-4

Lombardi L, Ceccarelli N, Picciarelli P, Lorenzi R. DNA degradation during programmed cell death in Phaseolus coccineus suspensor. Plant Physiol Biochem. 2007;45(3–4):221–227. http://dx.doi.org/10.1016/j.plaphy.2007.01.014




DOI: https://doi.org/10.5586/asbp.2014.014

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society