Extracellular matrix surface network is associated with non-morphogenic calli of Helianthus tuberosus cv. Albik produced from various explants

Maria Pilarska, Marzena Popielarska-Konieczna, Halina Ślesak, Małgorzata Kozieradzka-Kiszkurno, Grzegorz Góralski, Robert Konieczny, Jerzy Bohdanowicz, Elżbieta Kuta

Abstract


Helianthus tuberosus is economically important species. To improve characters of this energetic plant via genetic modification, production of callus tissue and plant regeneration are the first steps. A new, potentially energetic cultivar Albik was used in this study to test callus induction and regeneration. Callus was produced on leaves, petioles, apical meristems and stems from field-harvested plants but was totally non-morphogenic. Its induction started in the cortex and vascular bundles as confirmed by histological analysis. The surface of heterogeneous callus was partially covered with a membranous extracellular matrix surface network visible in scanning and transmission electron microscopies. The results clearly indicate that: (i) the morphogenic capacity of callus in topinambur is genotype dependent, (ii) cv. Albik of H. tuberosus proved recalcitrant in in vitro regeneration, and (iii) extracellular matrix surface network is not a morphogenic marker in this cultivar.

Keywords


callogenesis; extracellular matrix; in vitro culture; scanning electron microscopy; topinambur; transmission electron microscopy

Full Text:

PDF

References


Ma XY, Zhang LH, Shao HB, Xu G, Zhang F, Ni FT, et al. Jerusalem artichoke (Helianthus tuberosus), a medicinal salt-resistant plant has high adaptability and multiple-use values. J Med Plant Res. 2011;5(8):1272–1279.

Li XD, Miao FP, Ji NY. Two new epoxysteroids from Helianthus tuberosus. Molecules. 2011;16(12):8646–8653. http://dx.doi.org/10.3390/molecules16108646

Gutierrez Pesce P, Bizzarri M, Rugini E, de Pace C. In vitro microtuberization for simulating the developmental physiology of underground storage organ in Helianthus tuberosus. In: Proceedings of the joint meeting AGI-SIBV-SIGA. Assisi: SIGA; 2011. p. 6A.38.

Volk GM, Richards K. Preservation methods for Jerusalem artichoke cultivars. HortScience. 2006;41(1):80–83.

Pugliesi C, Megale P, Cecconi F, Baroncelli S. Organogenesis and embryogenesis in Helianthus tuberosus and in the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Plant Cell Tissue Organ Cult. 1993;33(2):187–193. http://dx.doi.org/10.1007/BF01983233

Bianchi R, Fambrini M, Pugliesi C. Morphogenesis in Helianthus tuberosus: genotypic influence and increased totipotency in previously regenerated plants. Biol Plant. 1999;42(4):515–523. http://dx.doi.org/10.1023/A:1002698511484

Fambrini M, Cionini G, Conti A, Michelotti V, Pugliesi C. Origin and development in vitro of shoot buds and somatic embryos from intact roots of Helianthus annuus × H. tuberosus. Ann Bot. 2003;92(1):145–151. http://dx.doi.org/10.1093/aob/mcg116

Verdeil JL, Hocher V, Huet C, Grosdemange F, Escoute J, Ferrière N, et al. Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Ann Bot. 2001;88(1):9–18. http://dx.doi.org/10.1006/anbo.2001.1408

Šamaj J, Baluška F, Bobák M, Volkmann D. Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM4. Plant Cell Rep. 1999;18(5):369–374. http://dx.doi.org/10.1007/s002990050588

Blehová A, Bobák M, Šamaj J, Hlinková E. Changes in the formation of an extracellular matrix surface network during early stages of indirect somatic embryogenesis in Drosera spathulata. Acta Bot Hung. 2010;52(1):23–33. http://dx.doi.org/10.1556/ABot.52.2010.1-2.3

Konieczny R, Bohdanowicz J, Czaplicki AZ, Przywara L. Extracellular matrix surface network during plant regeneration in wheat anther culture. Plant Cell Tissue Organ Cult. 2005;83(2):201–208. http://dx.doi.org/10.1007/s11240-005-5771-9

Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Świerczyńska J, Góralski G, Ślesak H, Bohdanowicz J. Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep. 2008;27(7):1137–1145. http://dx.doi.org/10.1007/s00299-008-0534-9

Bobák M, Šamaj J, Hlinková E, Hlavačka A, Ovečka M. Extracellular matrix in early stages of direct somatic embryogenesis in leaves of Drosera spathulata. Biol Plant. 2003;47(2):161–166. http://dx.doi.org/10.1023/B:BIOP.0000022245.64929.8b

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962;15(3):473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

R Core Team. R: a language and environment for statistical computing [Internet]. 2012 [cited 2013 Oct 20]; Available from: http://www.R-project.org

Fambrini M, Cionini G, Pugliesi C. Development of somatic embryos from morphogenetic cells of the interspecific hybrid Helianthus annuus × Helianthus tuberosus. Plant Sci. 1996;114(2):205–214. http://dx.doi.org/10.1016/0168-9452(95)04320-9

Fambrini M, Cionini G, Pugliesi C. Acquisition of high embryogenic potential in regenerated plants of Helianthus annuus × H. tuberosus. Plant Cell Tissue Organ Cult. 1997;51(2):103–110. http://dx.doi.org/10.1023/A:1005965628512

Gamburg KZ, Vysotskaya EF, Gamanets LV. Microtuber formation in micropropagated Jerusalem artichoke (Helianthus tuberosus). Plant Cell Tissue Organ Cult. 1998;55(2):115–118. http://dx.doi.org/10.1023/A:1006127319351

Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Tuleja M, Ślesak H, Kapusta P, Marcińska I, et al. Genotype-dependent efficiency of endosperm development in culture of selected cereals: histological and ultrastructural studies. Protoplasma. 2013;250(1):361–369. http://dx.doi.org/10.1007/s00709-012-0419-1

Ślesak H, Góralski G, Pawłowska H, Skucińska B, Popielarska-Konieczna M, Joachimiak AJ. The effect of genotype on a barley scutella culture. Histological aspects. Cent Eur J Biol. 2013;8(1):30–37. http://dx.doi.org/10.2478/s11535-012-0113-5

Fukuda H. Plant cell biology: signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol. 2004;5(5):379–391. http://dx.doi.org/10.1038/nrm1364

Jura J, Włoch W, Kojs P, Wilczek A, Szendera W. Current trends in the structural investigations of the vascular cambium. Bull Bot Gard. 2005;14:43–47.

Rose RJ, Wang XD, Nolan KE, Rolfe BG. Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene. J Exp Bot. 2006;57(10):2227–2235. http://dx.doi.org/10.1093/jxb/erj187

Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ. Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot. 2011;107(4):599–609. http://dx.doi.org/10.1093/aob/mcq269

Šamaj J, Bobák M, Kubošníková D, Krištín J, Kolarik E, Ovečcka M, et al. Bundle sheath cells are responsible for direct root regeneration from leaf explants of Helianthus occidentalis L. J Plant Physiol. 1999;154(1):89–94. http://dx.doi.org/10.1016/S0176-1617(99)80322-8

Dubois T, Dubois J, Guedira M, Diop A, Vasseur J. SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Ann Bot. 1992;70(2):119–124.

Popielarska-Konieczna M, Bohdanowicz J, Starnawska E. Extracellular matrix of plant callus tissue visualized by ESEM and SEM. Protoplasma. 2010;247(1-2):121–125. http://dx.doi.org/10.1007/s00709-010-0149-1

Mazarei M, Al-Ahmad H, Rudis MR, Joyce BL, Stewart CN. Switchgrass (Panicum virgatum L.) cell suspension cultures: establishment, characterization, and application. Plant Sci. 2011;181(6):712–715. http://dx.doi.org/10.1016/j.plantsci.2010.12.010

Namasivayam P, Skepper J, Hanke D. Identification of a potential structural marker for embryogenic competency in the Brassica napus spp. oleifera embryogenic tissue. Plant Cell Rep. 2006;25(9):887–895. http://dx.doi.org/10.1007/s00299-006-0122-9

Šamaj J, Bobák M, Blehová A, Krištin J, Auxtová-Šamajová O. Developmental SEM observations on an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma. 1995;186(1–2):45–49. http://dx.doi.org/10.1007/BF01276934

Šamaj J, Bobák M, Blehová A, Pret’ová A. Importance of cytoskeleton and cell wall in somatic embryogenesis. In: Mujib A, Šamaj J, editors. Somatic embryogenesis. Berlin: Springer; 2006. p. 35–50. (vol 2). http://dx.doi.org/10.1007/7089_024

Lai KS, Yusoff K, Maziah M. Extracellular matrix as the early structural marker for Centella asiatica embryogenic tissues. Biol Plant. 2011;55(3):549–553. http://dx.doi.org/10.1007/s10535-011-0123-6

Konieczny R, Świerczyńska J, Czaplicki AZ, Bohdanowicz J. Distribution of pectin and arabinogalactan protein epitopes during organogenesis from androgenic callus of wheat. Plant Cell Rep. 2007;26(3):355–363. http://dx.doi.org/10.1007/s00299-006-0222-6

Pilarska M, Czaplicki AZ, Konieczny R. Patterns of pectin epitope expression during shoot and root regeneration in androgenic cultures of two wheat cultivars. Acta Biol Crac Ser Bot. 2007;49:69–72.

Xu C, Zhao L, Pan X, Šamaj J. Developmental localization and methylesterification of pectin epitopes during somatic embryogenesis of banana (Musa ssp. AAA). PLoS ONE. 2011;6(8):e22992. http://dx.doi.org/10.1371/journal.pone.0022992

Pilarska M, Knox JP, Konieczny R. Arabinogalactan-protein and pectin epitopes in relation to an extracellular matrix surface network and somatic embryogenesis and callogenesis in Trifolium nigrescens Viv. Plant Cell Tissue Organ Cult. 2013;115(1):35–44. http://dx.doi.org/10.1007/s11240-013-0337-8




DOI: https://doi.org/10.5586/asbp.2014.009

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society