Identification of medicinal plant Schisandra chinensis using a potential DNA barcode ITS2

Xian-kuan Li, Bing Wang, Rong-chun Han, Yan-chao Zheng, Hai-bo Yin Yin, Liang Xu, Jian-kui Zhang, Bao-li Xu

Abstract


To test whether the internal transcribed spacer 2 (ITS2) region is an effective marker for using in authenticating of the Schisandra chinensis at the species and population levels, separately. And the results showed that the wild populations had higher percentage of individuals that had substitution of C→A at site 86-bp than the cultivated populations. At sites 10-bp, 37-bp, 42-bp and 235-bp, these bases of the Schisandra sphenanthera samples differed from that of S. chinensis. Two species showed higher levels of inter-specific divergence than intra-specific divergence within ITS2 sequences. However, 24 populations did not demonstrate much difference as inter-specific and intra-specific divergences were concerned. Both S. chinensis and S. sphenanthera showed monophyly at species level, yet the samples of different populations shown polyphyly at population level. ITS2 performed well when using BLAST1 method. ITS2 obtained 100% identification success rates at the species level for S. chinensis, with no ambiguous identification at the genus level for ITS2 alone. The ITS2 region could be used to identify S. chinensis and S. sphenanthera in the “Chinese Pharmacopoeia”. And it could also correctly distinguish 100% of species and 100% of genera from the 193 sequences of S. chinensis. Hence, the ITS2 is a powerful and efficient tool for species identification of S. chinensis.

Keywords


DNA barcode; ITS2; Schisandra chinensis; species; populations

Full Text:

PDF

References


Saunders RMK. Monograph of Kadsura (Schisandraceae). Syst Bot Mon. 1998;54:24–106. http://dx.doi.org/10.2307/25096646

Lin Q, Duan LD, Yao BF. Notes on three species of the genus Kadsura Juss. (Schisandraceae). Acta Phys Sin. 2005;43(6):567–570. http://dx.doi.org/10.1360/aps030102

Teraoka R, Shimada T, Aburada M. The molecular mechanisms of the hepatoprotective effect of gomisin A against oxidative stress and inflammatory response in rats with carbon tetrachloride-induced acute liver injury. Biol Pharm Bull. 2012;35(2):171–177. http://dx.doi.org/10.1248/bpb.35.171

Ip SP, Poon MKT, Wu SS, Che CT, Ng KH, Kong YC, et al. Effect of schisandrin B on hepatic glutathione antioxidant system in mice: protection against carbon tetrachloride toxicity. Planta Med. 2007;61(05):398–401. http://dx.doi.org/10.1055/s-2006-958123

Ip SP, Ko KM. The crucial antioxidant action of schisandrin B in protecting against carbon tetrachloride hepatotoxicity in mice: a comparative study with butylated hydroxytoluene. Biochem Pharmacol. 1996;52(11):1687–1693. http://dx.doi.org/10.1016/S0006-2952(96)00517-5

Nishiyama N, Chu PJ, Saito H. An herbal prescription, S-113m, consisting of biota, ginseng and schizandra, improves learning performance in senescence accelerated mouse. Biol Pharm Bull. 1996;19(3):388–393. http://dx.doi.org/10.1248/bpb.19.388

Kang SY, Lee KY, Koo KA, Yoon JS, Lim SW, Kim YC, et al. ESP-102, a standardized combined extract of Angelica gigas, Saururus chinensis and Schizandra chinensis, significantly improved scopolamine-induced memory impairment in mice. Life Sci. 2005;76(15):1691–1705. http://dx.doi.org/10.1016/j.lfs.2004.07.029

Hsieh MT, Wu CR, Wang WH, Lin LW. The ameliorating effect of the water layer of fructusschisandrae on cycloheximide-induced amnesia in rats: interaction with drugs acting at neurotransmitter receptors. Pharmacol Res. 2001;43(1):17–22. http://dx.doi.org/10.1006/phrs.2000.0756

Hsieh MT, Tsai ML, Peng WH, Wu CR. Effects of Fructus schizandrae on cycloheximide-induced amnesia in rats. Phytother Res. 1999;13(3):256–257. http://dx.doi.org/10.1002/(SICI)1099-1573(199905)13:3<256::AID-PTR435>3.0.CO;2-H

Sheng Y, Liu Y, Huang XD, Yuan GX, Guan M. Purification, chemical characterization and in vitro antioxidant activities of alkali-extracted polysaccharide fractions isolated from the fruits of Schisandra chinensis. J Med Plants Res. 2011;5(24):5881–5888.

Jung GT, Ju IO, Choi JS, Hong JS. The antioxidative, antimicrobial and nitrite scavenging effects of Schisandra chinensis RUPRECHT (Omija) seed. Korean J Food Sci Technol. 2000;32:928–935.

Mizoguchi Y, Shin T, Kobayashi K, Morisawa S. Effect of gomisin A in an immunologically-induced acute hepatic failure model. Planta Med. 1991;57(1):11–14. http://dx.doi.org/10.1055/s-2006-960006

Fu M, Sun ZH, Zong M, He XP, Zuo HC, Xie ZP. Deoxyschisandrin modulates synchronized Ca2+ oscillations and spontaneous synaptic transmission of cultured hippocampal neurons. Acta Pharmacol Sin. 2008;29(8):891–898. http://dx.doi.org/10.1111/j.1745-7254.2008.00821.x

Kim SR, Lee MK, Koo KA, Kim SH, Sung SH, Lee NG, et al. Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res. 2004;76(3):397–405. http://dx.doi.org/10.1002/jnr.20089

Hu YJ, Chen JZ, Ye L. The study evolvement of chemic components and differentiation methods between Schisandra chinensis and Schisandra sphenanthera. Res Pr Chin Med. 2008;22(4):59–62.

Law YW, editor. Menispermaceae & Magnoliaceae. Beijing: Chinese Academy of Sciences; 1996. (vol 30).

Maddison DR, Schulz KS, Maddison WP. The tree of life web project. Zootaxa. 2007;1668:19–40.

Wang PX, Li JY, Zhou L. Identification of S. chinensis (Turcz.) Baill. (Beiwuwei) and S. sphenanthera Rehd. et Wils. (Nanwuwei) by random amplified polymorphic DNA. Tradit Chin Drug Res Clin Pharmacol. 2002;13(2):98–99.

Sun Y, Wen X, Huang H. Population genetic differentiation of Schisandra chinensis and Schisandra sphenanthera as revealed by ISSR analysis. Biochem Syst Ecol. 2010;38(3):257–263. http://dx.doi.org/10.1016/j.bse.2010.01.005

Kim JS, Jang HW, Kim JS, Kim HJ, Kim JH. Molecular identification of Schisandra chinensis and its allied species using multiplex PCR based on SNPs. Genes Genom. 2012;34(3):283–290. http://dx.doi.org/10.1007/s13258-011-0201-3

Chiou SJ, Yen JH, Fang CL, Chen HL, Lin TY. Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers. Planta Med. 2007;73(13):1421–1426. http://dx.doi.org/10.1055/s-2007-990227

Chen S, Yao H, Han J, Liu C, Song J, Shi L, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE. 2010;5(1):e8613. http://dx.doi.org/10.1371/journal.pone.0008613

Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet. 2003;19(7):370–375. http://dx.doi.org/10.1016/S0168-9525(03)00118-5

Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35(10):3322–3329. http://dx.doi.org/10.1093/nar/gkm233

Schultz J, Maisel S, Gerlach D, Müller T, Wolf M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA. 2005;11(4):361–364. http://dx.doi.org/10.1261/rna.7204505

Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):755–763. http://dx.doi.org/10.1093/bioinformatics/14.9.755

Eddy SR. HMMER: profile hidden Markov models for biological sequence analysis. Wash Univ Med Alumni Q; 2000.

Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene. 2009;430(1–2):50–57. http://dx.doi.org/10.1016/j.gene.2008.10.012

Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res. 1994;22(22):4673–4680. http://dx.doi.org/10.1093/nar/22.22.4673

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–1599. http://dx.doi.org/10.1093/molbev/msm092

Meyer CP, Paulay G. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol. 2005;3(12):e422. http://dx.doi.org/10.1371/journal.pbio.0030422

Meier R, Zhang G, Ali F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol. 2008;57(5):809–813. http://dx.doi.org/10.1080/10635150802406343

Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, et al. DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA. 2008;105(8):2923–2928. http://dx.doi.org/10.1073/pnas.0709936105

Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE. 2007;2(6):e508. http://dx.doi.org/10.1371/journal.pone.0000508

Ross HA, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation. Syst Biol. 2008;57(2):216–230. http://dx.doi.org/10.1080/10635150802032990

Li DZ, Gao LM, Li HT, Wang H, Ge XJ, Liu JQ, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA. 2011;108(49):19641–19646. http://dx.doi.org/10.1073/pnas.1104551108

Liu Z, Wang XQ, Chen ZD, Lin Q, Lu AM. The phylogeny of Schisandraceae inferred from sequence analysis of the nrDNA ITS region. Acta Bot Sin. 2000;42(7):758–761.

Ma CC, Gao YB, Guo HY, Wang JL. Interspecific transition among Caragana microphylla, C. davazamcii and C. korshinskii along geographic gradient. II. Characteristics of photosynthesis and water metabolism. Acta Bot Sin. 2003;45(10):1228–1237.

Hou X, Liu JE, Zhao YZ, Zhao LQ. Interspecific relationships of Caragana microphylla, C. davazamcii and C. korshinskii (Leguminosae) based on ITS and trnL-F data sets. Acta Phytotaxon Sin. 2006;44(2):126–134. http://dx.doi.org/10.1360/aps040077

Hou X, Liu JE, Zhao YZ. Molecular phylogeny of Caragana (Fabaceae) in China. Acta Phytotaxon Sin. 2008;46:600–607. http://dx.doi.org/10.3724/SP.J.1002.2008.07071

Wojciechowski MF, Sanderson MJ, Baldwin BG, Donoghue MJ. Monophyly of aneuploid Astragalus (Fabaceae): evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot. 1993;80(6):711–722. http://dx.doi.org/10.2307/2445441

Zhang ML. Ancestral area analysis of the genus Caragana (Leguminosae). Acta Bot Sin. 2004;46(3):253–258.

Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA. 2005;102(23):8369–8374. http://dx.doi.org/10.1073/pnas.0503123102

Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñán S, Petersen G, et al. A proposal for a standardised protocol to barcode all land plants. Taxon. 2007;56(2):295–299.

Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J. Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Resour. 2008;8(3):480–490. http://dx.doi.org/10.1111/j.1471-8286.2007.02002.x




DOI: https://doi.org/10.5586/asbp.2013.032

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society