Content of pyrrolizidine alkaloids in the leaves of coltsfoot (Tussilago farfara L.) in Poland

Artur Adamczak, Bogna Opala, Agnieszka Gryszczyńska, Waldemar Buchwald


Coltsfoot (Tussilago farfara L.) is a common species, widely used in European and Chinese traditional medicine for the treatment of respiratory diseases. However, raw material from this plant contains hepatotoxic pyrrolizidine alkaloids (PAs). The aim of the study was to determine the variability of the level of PAs (senkirkine and senecionine) in leaves of coltsfoot originated from natural populations in Poland. In the phytochemical analysis, 20 samples of T. farfara were used. This plant material was obtained from the Garden of Medicinal Plants in Plewiska near Poznań and originated from different regions of Poland. Coltsfoot leaves were harvested in the middle of July of 2010 and then dried at room temperature. The alkaloid content was detected using the HPLC-DAD method. The amount of PAs in leaves of T. farfara changed in a wide range from 0.06 to 1.04 μg g−1 of dry matter (DM). The content of senkirkine and senecionine was positively correlated (r = 0.68, P = 0.001). There was no statistically significant correlation between the amount of PAs as well as leaf weight and water content in leaves of T. farfara. Our results showed that a medium-sized leaf of coltsfoot (0.33 g DM) may contain from 0.02 to 0.34 μg of PAs (on average 0.14 μg). The level of PAs was not associated with the region of Poland, but phytochemical similarity of samples was usually visible at the local scale. Coltsfoot leaves are characterized by a high variability of the content of toxic PAs, much higher than in the case of the main active compounds, especially flavonoids and mucilage.
This phytochemical variability is mainly genetically determined (samples came from a garden collection), and it can be increased by environmental factors. Our investigations indicate that Polish natural populations of T. farfara may provide raw material with a low level of toxic PAs.


Tussilago farfara; medicinal plants; toxicity; pyrrolizidine alkaloids; senkirkine; senecionine

Full Text:



Walas J. Tussilago, podbiał. In: Pawłowski B, Jasiewicz A, editors. Flora polska. Rośliny naczyniowe Polski i ziem ościennych. Warsaw: Polish Scientific Publishers PWN; 1971. p. 306–307. (vol 12).

Hegi G. Illustrierte Flora von Mitteleuropa. 2nd ed. Berlin: Parey; 1987. (vol 6).

Rutkowski L. Klucz do oznaczania roślin naczyniowych Polski niżowej. 2nd ed. Warsaw: Polish Scientific Publishers PWN; 2008.

Kopp B, Wawrosh C, Lebada R, Wiedenfeld H. PA-freie Huflattichblätter. Teil I. In-vitro-Kultivierung und Selektionszüchtung. Dtsch Apoth Ztg. 1997;137(45):4066–4069.

Ivancheva S, Stantcheva B. Ethnobotanical inventory of medicinal plants in Bulgaria. J Ethnopharmacol. 2000;69(2):165–172.

Gao H, Huang YN, Gao B, Xu PY, Inagaki C, Kawabata J. α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L. Food Chem. 2008;106(3):1195–1201.

Jiang Z, Liu F, Goh JJL, Yu L, Li SFY, Ong ES, et al. Determination of senkirkine and senecionine in Tussilago farfara using microwave-assisted extraction and pressurized hot water extraction with liquid chromatography tandem mass spectrometry. Talanta. 2009;79(2):539–546.

Kozłowski J, Buchwald W, Forycka A, Szczyglewska D. Rośliny i surowce lecznicze. Poznań: IWNiRZ; 2009.

Ram A, Balachandar S, Vijayananth P, Singh VP. Medicinal plants useful for treating chronic obstructive pulmonary disease (COPD): current status and future perspectives. Fitoterapia. 2011;82(2):141–151.

Xue SY, Li ZY, Zhi HJ, Sun HF, Zhang LZ, Guo XQ, et al. Metabolic fingerprinting investigation of Tussilago farfara L. by GC–MS and multivariate data analysis. Biochem Syst Ecol. 2012;41:6–12.

Ryu JH, Jeong YS, Sohn DH. A new bisabolene epoxide from Tussilago farfara, and inhibition of nitric oxide synthesis in LPS-activated macrophages. J Nat Prod. 1999;62(10):1437–1438.

Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T. Screening of some Siberian medicinal plants for antimicrobial activity. J Ethnopharmacol. 2002;82(1):51–53.

Hwangbo C, Lee HS, Park J, Choe J, Lee JH. The anti-inflammatory effect of tussilagone, from Tussilago farfara, is mediated by the induction of heme oxygenase-1 in murine macrophages. Intern Immunopharmacol. 2009;9(13–14):1578–1584.

Garvey MI, Rahman MM, Gibbons S, Piddock LJV. Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Intern J Antimicrob Agents. 2011;37(2):145–151.

Ravipati AS, Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, et al. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. Compl Altern Med. 2012;12(1):173.

Haaland E. Studies on pectins from the leaves of Tussilago farfara L. Acta Chem Scand. 1972;26(6):2322–2328.

Didry N, Pinkas M, Torck M, Dubreuil L. Sur la composition chimique et l’activité du tussilage. Ann Pharm Fr. 1972;40(1):75–80.

Kohlmünzer S. Farmakognozja. 5th ed. Warsaw: PZWL; 2003.

Kim MR, Lee JY, Lee HH, Aryal DK, Kim YG, Kim SK, et al. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem Toxic. 2006;44(8):1299–1307.

Wiedenfeld H. Plants containing pyrrolizidine alkaloids: toxicity and problems. Food Addit Contam. 2011;28(3):282–292.

Wiedenfeld H. PA-freie Huflattichblätter. Teil II. Analytik der Pyrrolizidinalkaloide. Dtsch Apoth Ztg. 1997;137(45):4070–4075.

Lebada R, Schreier A, Scherz S, Resch C, Krenn L, Kopp B. Quantitative analysis of the pyrrolizidine alkaloids senkirkine and senecionine in Tussilago farfara L. by capillary electrophoresis. Phytochem Anal. 2000;11(6):366–369.<366::AID-PCA538>3.0.CO;2-1

Mroczek T, Glowniak K, Wlaszczyk A. Simultaneous determination of N-oxides and free bases of pyrrolizidine alkaloids by cation-exchange solid-phase extraction and ion-pair high-performance liquid chromatography. J Chromatogr A. 2002;949(1–2):249–262.

Adamczak A, Buchwald W, Gryszczyńska A. Phytochemical variability of coltsfoot (Tussilago farfara L.) in Poland. Herba Pol. 2012;58(4):7–14.

Statistica 7.1 (data analysis software system). StatSoft; 2005.

Röder E. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie. 1995;50(2):83–98.

Wawrosh C, Kopp B, Wiedenfeld H. Permanent monitoring of pyrrolizidine alkaloid content in micropropagated Tussilago farfara L.: a tool to fulfill statutory demands for the quality of coltsfoot in Austria and Germany. Acta Hort. 2000;530:469–472.

González-Tejero MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, et al. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. J Ethnopharmacol. 2008;116(2):341–357.

Łuczaj Ł, Szymański WM. Wild vascular plants gathered for consumption in the Polish countryside: a review. J Ethnobiol Ethnomed. 2007;3(1):17.

Kalle R, Sõukand R. Historical ethnobotanical review of wild edible plants of Estonia (1770s–1960s). Acta Soc Bot Pol. 2012;81(4):271–281.

Łuczaj Ł. Ethnobotanical review of wild edible plants of Slovakia. Acta Soc Bot Pol. 2012;81(4):245–255.

Łuczaj Ł. Dziko rosnące rośliny jadalne użytkowane w Polsce od połowy XIX w. do czasów współczesnych. Etnobiol Pol. 2011;1:57–125.

Dénes A, Papp N, Babai D, Czúcz B, Molnár Z. Wild plants used for food by Hungarian ethnic groups living in the Carpathian Basin. Acta Soc Bot Pol. 2012;81(4):381–396.

ANZFA (Australia New Zealand Food Authority). Pyrrolizidine alkaloids in food. A toxicological review and risk assessment. Canberra: ANZFA Press; 2001. (Technical report series).

EFSA (European Food Safety Authority). Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA panel on contaminants in the food chain (CONTAM). EFSA J. 2011;9(11):2406.

Briggs LH, Cambie RC, Candy BJ, O’Donovan GM, Russell RH, Seelye RN. Alkaloids of New Zealand Senecio species. Part II. Senkirkine. J Chem Soc. 1965;456:2492–2498.