Trapetum natantis Müller et Görs 1960 in hydromeliorative facilities in Serbia

Dejana Džigurski, Branka Ljevnaić-Mašić, Ljiljana Nikolić


Trapa natans is one of the very few plants that generate so many contrasting views: it is highly endangered in Europe, invasive in North America and Australia, yet highly valued in India and China due to its nutritional and medical properties. Its endangered status in most of the Europe has prompted significant conservation efforts aimed at retention and expansion of its population. T. natans is currently on the red list of many European countries and is included under “Appendix I” of the “Convention on the conservation of European wildlife and natural habitats” (Bern Convention) and IPA list (IPA criterion A, threatened species). The unusual circumstances, i.e. endangered status of T. natans in the region on one hand and its expansion in Serbia on the other, are the reason behind this research that aims to present the distribution, floristic composition and ecological conditions of ass. Trapetum natantis stands in hydromeliorative facilities (Serbia), comprised of 28 hydrophytes. In the analyzed stands, based on the long-term phytocenological studies, we have singled out four floristic and ecological groups: the stands in which T. natans predominates, the stands with Ceratophyllum demersum, the stands with lemnids plants (Lemna minor, L. gibba, Spirodela polyrrhiza) and Salvinia natans and the stands with Hydrocharis morsus-ranae. In the researched localities, the differentiation of ass. Trapetum natantis stands is predetermined by the phosphorus and nitrate content, as well as pH and BOD5 levels.


Trapa natans; hydrophytes; the IUCN red list; endangered species; properties of water; Serbia

Full Text:



Hummel M, Kiviat E. Review of world literature on water chestnut with implications for management in North America. J Aquat Plant Manag. 2004;42:17–28.

Pemberton RW. Water chestnut. In: Van Driesche RG, Blossey B, Hoddle M, Lyon S, Reardon R, editors. Biological control of invasive plants in the eastern United States. Morgantown WV: USDA, Forest Service, FHTET; 2002. p. 33–40.

Olszewski T, Markowski T. Trapa natans L. s. l. as extinct in the 19th century component of Gdańsk Pomerania flora. In: Olszewski T, Afranowicz R, Bociąg K, editors. Contemporary trends of botanical research – on Professor Hanna Piotrowska 80th birthday anniversary. 2007. p. 153–156. (Acta Bot Cassub; vol 6).

The IUCN red list of threatened species. Version 2012.2 [Internet]. [cited 2012 Oct 22]; Available from:

Službeni list RCG br. 76/06, od 12. decembra 2006. godine. Riješenje o stavljanju pod zaštitu pojedinih biljnih i životinjskih vrsta [Internet]. [cited 2012 Oct 8]. Available from:

Ciocârlan V. Vascular flora of the Danube Delta. Analele Stiintifice Ale Univ. Al Cuza Iasi. 2011;57(1):41–64.

Les DH, Mehrhoff LJ. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biol Invasions. 1999;1(2-3):281–300.

Naylor M. Water chestnut in the Chesapeake Bay watershed: a regional management plan. Baltimore MD: Maryland Department of Natural Resources; 2003.

Alternative farming systems information center [Internet]. Usda Natl. Agric. Libr. 2011 [cited 2011 Dec 12]; Available from:

Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J. Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon. 2004;53(1):131.

Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia. 2008;595:9–26.

Thiébaut G. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and introduced ranges. A comparison between their invasiveness in North America and in France. Biol Invasions. 2006;9(1):1–12.

Wetzel RG. Invasive plants: the process within wetland ecosystems. In: Inderjit S, Drake AJ, editors. Invasive plants: ecological and agricultural aspects. Basel: Birkhäuser Verlag; 2005. p. 115–127.

Bernez I, Aguiar F, Violle C, Ferreira T. Invasive river plants from Portuguese floodplains: what can species attributes tell us? Hydrobiologia. 2006;570(1):3–9.

Vuković N, Bernardić A, Nikolić T, Hršak V, Plazibat M, Jelaska S. Analysis and distributional patterns of the invasive flora in a protected mountain area – a case study of Medvednica Nature park (Croatia). Acta Soc Bot Pol. 2010;79(4):285–294.

Lacoul P, Freedman B. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 2006;14(2):89–136.

Carpenter SR, Lodge DM. Effects of submersed macrophytes on ecosystem processes. Aquat Bot. 1986;26:341–370.

Chase JM, Knight TM. Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion. Biol Invasions. 2006;8(8):1643–1649.

Braun-Blanquet J. Pflanzensoziologie. 3rd ed. Wien: Springer; 1964.

Josifović M, editor. Flora of SR Serbia. Beograd: SANU; 1970. (vol 1–9).

Sarić M, editor. Flora of SR Serbia. Beograd: SANU; 1986. (vol 10).

Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea. Cambridge: Cambridge University Press; 1964. (vol 1).

Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, et al., editors. Flora Europaea. Cambridge: Cambridge University Press; 1968. (vol 2–5).

Felföldy L. Visugyi hidrobiologia. Budapest: 18-Kotet-Hinar haterarazo Korniezetveldelmi es Teruletfejlestesi Miniszterium; 1990.

Jávorka S, Csapody V. Iconographie der Flora des Südostlichen Mitteleuropa. Budapest: Akadémiai Kiadó; 1975.

Hennekens SM, Schaminée JHJ. TURBOVEG, a comprehensive data base management system for vegetation data. J Veg Sci. 2001;12(4):589–591.

Tichý L. JUICE, software for vegetation classification. J Veg Sci. 2002;13(3):451–453.

APHA, AWWA, WPCF. Standard methods for examination of water and wastewater. 17th ed. Washington DC: APHA; 1995.

STATISTICA 7.0. StatSoft; 2004.

Lazić D. Vaskular flora and vegetation in the MCH of HS DTD on the territory of Bačka – current situation and management [PhD thesis]. Novi Sad: University of Novi Sad; 2006.

Ljevnaić-Mašić B. Hidrophytes in Main Canal Network of DTD Hydrosystem on the territory of Banat [PhD thesis]. Novi Sad: University of Novi Sad; 2010.

Blaženčić J. The effect on the water chestnut (Trapa L.) survival in associations with the white and yellow water lily [Nymphaea alba L. and Nuphar lutea (L.) Sm. in Sibth. et Sm.]. In: 8th symposium on the flora of Southeastern Serbia and neighbouring regions. Niš: Faculty of Natural Sciences and Mathematics; 2005. p. 68.

Džigurski D, Knežević A, Stojanović S, Nikolić L, Ljevnaić-Mašić B. The vegetation of canal Novi Sad-Savino Selo. Thaiszia. 2010;20:137–145.

Hrivnák R. Aquatic plant communities in the catchment area of the Ipeľ river in Slovakai and Hungary. Part II. Class Potametea. Thaiszia. 2002;12:137–160.

Schneider E. Aquatic macrophytes in the Danube Delta – indicators for water quality and habitat parameters. Stud. Univ. Babes–bolyai Biol. 2009;54(1):21–31.

Coldea G, Sanda V, Popescu A, Ştefan N, editors. Les associations végétales de Roumanie. Cluj: Presses Universitaires de Cluj; 1997. (vol 1).

Szankowski M, Kłosowski S. Habitat conditions of nymphaeid associations in Poland. Hydrobiologia. 1999;415:177–185.

Kočić A, Hengl T, Horvatić J. Water nutrient concentrations in channels in relation to occurrence of aquatic plants: a case study in eastern Croatia. Hydrobiologia. 2008;603(1):253–266.

OECD. Eutrophication of waters: monitoring, assessment and control. Paris: Organisation for Economic Co-operation and Development; 1982.

Staniszewski R. Estimation of river trophy in the Kujawskie Lakeland using mean trophic rank and chemical index of trophy. Rocz. Ar Pozn Bot. 2001;4:165–173.

Madsen JD. Predicting invasion success of Eurasian watermilfoil. J Aquat Plant Manag. 1998;36:28–32.

Balevičienė J, Balevičius A. Qualitative and quantitative parameters of phytocenoses in Lithuanian lakes of different trophic state. Ekologija. 2006;2:34–43.

Nurminen L. Macrophyte species composition reflecting water quality changes in adjacent water bodies of lake Hiidenvesi, SW Finland. Ann Bot Fenn. 2003;40:199–208.

Barrat-Segretain MH, Elger A. Experiments on growth interactions between two invasive macrophyte species. J Veg Sci. 2004;15(1):109–114.

Kuhar U, Germ M, Gaberščik A. Habitat characteristics of an alien species Elodea canadensis in Slovenian watercourses. Hydrobiologia. 2010;656(1):205–212.

Lukács BA, Dévai G, Tóthmérész B. Aquatic macrophytes as bioindicators of water chemistry in nutrient rich backwaters along the Upper-Tisza river (in Hungary). Phytocoenologia. 2009;39(3):287–293.;269X/2009/0039&U8211;0287

Dimopoulos P, Sýkora K, Gilissen C, Wiecherink D, Georgiadis T. Vegetation ecology of Kalodiki Fen (NW Greece). Biologia (Bratisl.). 2005;60(1):69–82.

Sugier P, Lorens B, Chmiel S, Turczyński M. The influence of Ceratophyllum demersum L. and Stratiotes aloides L. on richness and diversity of aquatic vegetation in the lakes of mid-eastern Poland. Hydrobiologia. 2010;656(1):43–53.

Nikolić L, Pajević S, Ljevnaić B. Primary production dynamics of dominant hydrophytes in Lake Provala (Serbia). Cent Eur J Biol. 2009;4(2):250–257.

Nikolić L, Čobanović K, Lazić D. Nymphoides peltata (Gmel.) Kuntze, Myriophyllum spicatum L. and Ceratophyllum demersum L. biomass dynamics in Lake Provala (the Vojvodina Province, Serbia). Cent Eur J Biol. 2007;2(1):156–168.

Sýkora KV. Field guide Dutch plant communities. Species composition and ecology. 2006.

Zhu B, Eppers ME, Rudstam LG. Predicting invasion of European frogbit in the Finger Lakes of New York. J Aquat Plant Manag. 2008;46(46):186–189.

Cook CD, Lüönd R. A revision of the genus Hydrocharis (Hydrocharitaceae). Aquat Bot. 1982;14:177–204.

Catling PM, Mitrow G, Haber E, Posluszny U, Charlton WA. The biology of Canadian weeds. 124. Hydrocharis morsus-ranae L. Can J Plant Sci. 2003;83(4):1001–1016.

Catling PM, Dore WG. Status and identification of Hydrocharis morsus-ranae and Limnobium spongia (Hydrocharitaceae) in northeastern North America. Rhodora. 1982;84:523–545.

Klavins M, Rodinov V, Druvietis I. Aquatic chemistry and humic substances in bog lakes in Latvia. Boreal Env. Res. 2002;8:113–123.

Hrivnák R, Ot’ahel’ová H, Valachovič M, Pal’ove-Balang P, Kubinská A. Effect of environmental variables on the aquatic macrophyte composition pattern in streams: a case study from Slovakia. Fundam Appl Limnol. 2010;177(2):115–124.

Bernez I, Daniel H, Haury J, Ferreira MT. Combined effects of environmental factors and regulation on macrophyte vegetation along three rivers in western France. River Res Appl. 2004;20(1):43–59.

Madsen JD, Stewart RM, Getsinger K, Johnson RL, Wersal RM. Aquatic plant communities in Waneta Lake and Lamoka Lake, New York. Northeast. Nat. 2008;15:97–110.

O’Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T. Macrophyte communities of European streams with altered physical habitat. Hydrobiologia. 2006;566(1):197–210.

Sender J. Changes in structure of macrophyte communities in the chosen lakes of Łęczna-Włodawa Lake District. Ecohydrol. Hydrobiol. 2009;9(2–4):237–245.

Jabłońska E, Kłosowski S. Ecology of rare water plant communities in lakes of north-eastern Poland. Acta Soc Bot Pol. 2012;81(1):3–9.

Hrivnák R, Ot’ahel’ová H, Valachovič M. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Pol. J Ecol. 2007;55:717–729.

Kremser U, Schnug E. Impact of fertilizers on aquatic ecosystems and protection of water bodies from mineral nutrients. Landbauforsch. Völkenrode. 2002;2(52):81–90.

Schaumburg J, Schranz C, Foerster J, Gutowski A, Hofmann G, Meilinger P, et al. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the water framework directive. Limnologica. 2004;34(4):283–301.

European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23rd October 2000: establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities. 2000;327:1–72.

Hrivnák R, Oťahel’ová H, Jarolímek I. Diversity of aquatic macrophytes in relation to environmental factors in the Slatina river (Slovakia). Biologia (Bratisl.). 2006;61(4):413–419.

Ferreira T, Aguiar F. Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica. 2006;25(1):411–424.

Lewin I, Szoszkiewicz K. Drivers of macrophyte development in rivers in an agricultural area: indicative species reactions. Cent Eur J Biol. 2012;7(4):731–740.

Fabris M, Ghetti PF. Application and development of river quality bioindication methods based on macrophytes. In: 4th ECRR conference on river restoration Italy, Venice S. Servolo Island 16-21 June 2008. Venice: ECRR; 2008.

Ot’ahel’ová H, Hrivnák R, Valachovič M, Janauer G. Temporal changes of aquatic macrophyres vegetation in a lowland groundwater feed eutrophic course (Klátovske Rameno, Slovakai). Acta Soc Bot Pol. 2007;76(2):141–150.

Birk S, Willby N. Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia. 2010;652(1):149–163.