Spatial variability more influential than soil pH and land relief on thermophilous vegetation in overgrown coppice oak forests

Tomasz H. Szymura, Magdalena Szymura

Abstract


The overgrown coppice oak forests that cover the southern slopes beneath the foothills of the Sudetes (Silesia, Central Europe) are considered to be Euro-Siberian steppic woods with a Quercus sp. habitat (91I0): a priority habitat in the European Union, according to the Natura 2000 system. In subcontinental parts of Central Europe, thermophilous oak forest vegetation is found extrazonally; its presence, in the study site, is related to previous coppice management. In this paper we explore the differentiation of the vegetation caused both by land-relief derived variables (potential heat load, slope inclination and exposition, soil depth) and soil pH, as well as spatial processes. The data on the vegetation were collected from 117 regularly arranged sampling plots, located in three mountain ranges. The vegetation consisted of a mixture of species considered as typical for different habitats (mesophilous forests, acidophilous forests, thermophilous oak forests, grassland, thermophilous fringes and mesophilous mantle) and was relatively rich in species. Many of the species found were rare and are protected in Poland. The results of the bioindication, on the basis of Ellenberg indicator values, suggest the pH gradient to be the most important, followed by the insolation/moisture gradient, to the differentiation of the studied vegetation. The thermophilous oak forests seem to occupy the niche between acidophilous and mesophilous forest. However the decomposition of spatial variation, assessed on the basis of semivariance values of the vegetation similarity coefficient (frequency index), emphasizes a strong differentiation of vegetation between sites and mountain ranges.

The results of canonical correspondence analysis, performed on a spatially stratified sub-set of the data, revealed a stronger effect caused by spatial variation (32.7% of explained species variation) than environmental variables, such as soil pH and potential heat load (13.1%). Since the shared variation was low (1.8%), it showed a strong influence of spatial processes, revealing the effect of the local species pool.


Keywords


Euro-Siberian steppic woods; species pool; potential heat load; soil reaction; thermophilous oak forests; traditional forest management; variation partitioning; 91I0 habitat

Full Text:

PDF

References


Bürgi M. Habitat alterations caused by long-term changes in forest use in northeastern Switzerland. In: Kirby KJ, Watkins C, editors. The ecological history of European forest. Oxford: CAB International; 1998. p. 203–211.

Wohlgemuth T, Bürgi M, Scheidegger C, Schütz M. Dominance reduction of species through disturbance – a proposed management principle for central European forests. For Ecol Manage. 2002;166(1–3):1–15. http://dx.doi.org/10.1016/S0378-1127(01)00662-4

Jakubowska-Gabara J. Decline of Potentillo albae-Quercetum Libb. 1933 phytocoenoses in Poland. Vegetatio. 1996;124(1):45–59. http://dx.doi.org/10.1007/BF00045143

Roleček J. Vegetation types of dry-mesic oak forests in Slovakia. Preslia. 2005;77(3):241–261.

Hédl R, Kopecký M, Komárek J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Divers Distrib. 2010;16(2):267–276. http://dx.doi.org/10.1111/j.1472-4642.2010.00637.x

Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez-Franger A, et al. Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol. 2004;41(6):1065–1079. http://dx.doi.org/10.1111/j.0021-8901.2004.00960.x

Müller SW, Rusterholz HP, Baur B. Effects of forestry practices on relict plant species on limestone cliffs in the northern Swiss Jura mountains. For Ecol Manage. 2006;237(1–3):227–236. http://dx.doi.org/10.1016/j.foreco.2006.09.048

van Calster H, Baeten L, Verheyen K, De Keersmaeker L, Dekeyser S, Rogister JE, et al. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. For Ecol Manage. 2008;256(4):519–528. http://dx.doi.org/10.1016/j.foreco.2008.04.042

Baeten L, Bauwens B, De Schrijver A, De Keersmaeker L, van Calster H, Vandekerkhove K, et al. Herb layer changes (1954–2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl Veg Sci. 2009;12(2):187–197. http://dx.doi.org/10.1111/j.1654-109X.2009.01013.x

Szymura TH. Tradycyjna gospodarka odroślowa w Europie Środkowej i jej wpływ na różnorodność biologiczną. Sylwan. 2010;154(8):545–551.

Kwiatkowski P. Zbiorowiska leśne Pogórza Złotoryjskiego. Fragm Flor Geobot Polonica. 2001;8:178–218.

Kwiatkowski P. Podgórska ciepłolubna dąbrowa brekiniowa Sorbo torminalis-Quercetum na Pogórzu Złotoryjskim. Fragm Flor Geobot Polonica. 2003;10:175–193.

Paczoski J. Dąbrowy Białowieży. Przegląd Leśniczy. 1926;11:517–529.

Domin K. The plant associations of the valley of Radotin. Preslia. 1928;7:3–68.

Klika J. Geobotanicki studie rostlinných společenstev Velké Hory u Karlštejna. Rozpr České Akad Vĕd. 1928;37(12):1–42.

Ellenberg HH. Vegetation ecology of central Europe. 4th ed. Cambridge: Cambridge University Press; 2009.

Szczęśniak E. Szata roślinna północno-zachodniej części Pogórza Wałbrzyskiego. II. Zbiorowiska leśne. Acta Uni Wrat Prace Bot. 1999;73:83–113.

Berdowski W, Panek E. Roślinność rezerwatu “Góra Radunia” w województwie wrocławskim. Parki Narodowe i Rezerwaty Przyrody. 1999;18(2):3–13.

Holeksa J, Woźniak G. Biased vegetation patterns and detection of vegetation changes using phytosociological databases. A case study in the forests of the Babia Góra National Park (the West Carpathians, Poland). Phytocoenologia. 2005;35(1):1–18. http://dx.doi.org/10.1127/0340-269X/2005/0035-0001

Hédl R. Is sampling subjectivity a distorting factor in surveys for vegetation diversity? Folia Geobot. 2007;42(2):191–198. http://dx.doi.org/10.1007/BF02893885

Michalcová D, Lvončík S, Chytrý M, Hájek O. Bias in vegetation databases? A comparison of stratified-random and preferential sampling. J Veg Sci. 2011;22(2):281–291. http://dx.doi.org/10.1111/j.1654-1103.2010.01249.x

Hubbell SP. The unified neutral theory of biodiversity and biogeography. Princeton NJ: Princeton University Press; 2001.

Szymura TH, Szymura M. Soil properties and light availability determine species richness and vegetation diversity in an overgrown coppice oak stand. Polish J Ecol. 2011;59(3):523–533.

Zelný D, Chytrý M. Environmental control of the vegetation pattern in deep river valleys of the Bohemian Massif. Preslia. 2007;79:205–222.

Szymura TH. How does recent vegetation reflect previous systems of forest management? Polish J Ecol. 2012;60(4):859–862.

Chytrý M, Otýpková Z. Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci. 2003;14(4):563–570. http://dx.doi.org/10.1111/j.1654-1103.2003.tb02183.x

Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M. Flowering plants and pteridophytes of Poland a checklist. In: Mirek Z, editor. Biodiversity of Poland. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002. (vol 1).

Ellenberg H, Weber HE, Düll R, Werner W, Paulißen D. Zeigerwerte der Pflanzen in Mitteleuropa. Scr Geobot. 1992;18:1–258.

Persson S. Ecological indicator values as an aid in the interpretation of ordination diagrams. J Ecol. 1981;69(1):71. http://dx.doi.org/10.2307/2259816

Tichý L. Juice (version 6.4.59). Brno: Masaryk University; 2007.

Matuszkiewicz W. Przewodnik do oznaczania zbiorowisk roślinnych Polski. Warszawa: Polish Scientific Publishers PWN; 2006.

Isaaks EH, Srivastava RM. An introduction to applied geostatistics. Oxford: Oxford University Press; 1989.

Legendre P, Legendre LFJ. Numerical ecology. 2nd ed. Amsterdam: Elsevier; 1998.

Tichý L. New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecol. 2005;179(1):67–72. http://dx.doi.org/10.1007/s11258-004-5798-8

McCune B, Keon D. Equations for potential annual direct incident radiation and heat load. J Veg Sci. 2002;13(4):603–606. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02087.x

Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73(3):1045. http://dx.doi.org/10.2307/1940179

ter Braak CJF, Prentice IC. A theory of gradient analysis. Adv Ecol Res. 2004;34:235–282.

Kącki Z, Śliwiński M. The Polish Vegetation Database: structure, resources and development. Acta Soc Bot Pol. 2012;81(2):75–79. http://dx.doi.org/10.5586/asbp.2012.014

Zobel M. The relative of species pools in determining plant species richness: an alternative explanation of species coexistence? Trends Ecol Evol. 1997;12(7):266–269. http://dx.doi.org/10.1016/S0169-5347(97)01096-3

Ehrlen J, Eriksson O. Dispersal limitation and patch occupancy in forest herbs. Ecology. 2000;81(6):1667. http://dx.doi.org/10.2307/177315

Vondrák J, Prach K. Occurrence of heliophilous species on isolated rocky outcrops in a forested landscape: relict species or recent arrivals. Preslia. 2006;78:115–121.

Honnay O, Jacquemyn H, Bossuyt B, Hermy M. Forest fragmentation effects on patch occupancy and population viability of herbaceous plant species. New Phytol. 2005;166(3):723–736. http://dx.doi.org/10.1111/j.1469-8137.2005.01352.x




DOI: https://doi.org/10.5586/asbp.2013.003

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society