'Elaioplasts' identified as lipotubuloids in Althaea rosea, Funkia sieboldiana and Vanilla planifolia contain lipid bodies connected with microtubules

Maria Kwiatkowska, Dariusz Stępiński, Katarzyna Popłońska, Agnieszka Wojtczak, Justyna Teresa Polit

Abstract


"Elaioplasts" observed in Vanilla planifolia, Funkia Sieboldiana and Althaea rosea exhibit all the features characteristic of lipotubuloids earlier described in Ornithogalum umbellatum. They are cytoplasmic domains containing aggregates of lipid bodies connected with microtubules. The immunogold technique confirmed the presence of tubulin in this domain. These structures do not have their own membranes but they are surrounded by a tonoplast at the side of a vacuole since they invaginate into it. In cytoplasm of this domain among lipid bodies there are numerous ribosomes, ER cisternae and vesicles as well as few mitochondria, Golgi structures and microbodies while at older developmental stages there are also autolytic vacuoles. The fact that they are so similar to O. umbellatum lipotubuloids suggest that "elaioplasts" of V. planifolia, F. Sieboldiana and A. rosea can also be named lipotubuloids.

Keywords


elaioplasts; immunogold technique; lipid bodies; lipotubuloids; microtubules; tubulin

Full Text:

PDF

References


Hsieh K, Huang AH. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell. 2007;19(2):582-596. doi:10.1105/tpc.106.049049.

Hasunuma T, Kondo A, Miyake C. Metabolic pathway engineering by plastid transformation is a powerful tool for production of compounds in higher plants. Plant Biotech. 2009;26(1):39-46.

Wakker ICH. Studien über die Inhaltskörper der Pflanzenzelle. Jahrb Wissensc Bot. 1888;19:423-496.

Wałek-Czernecka A, Kwiatkowska M. Elajoplasty ślazowatych. Acta Soc Bot Pol. 1961;31:539-543.

Kwiatkowska M. Elajoplasty goryczek cz. II. Obserwacje na materiale utrwalonym. Acta Soc Bot Pol. 1961;30:371-380.

Kwiatkowska M. Elajoplasty dalii. Zeszyty Naukowe UŁ. 1963;2(14):81-91.

Kwiatkowska M. Investigation on the elaioplasts of Ornithogalum umbellatum L. Acta Soc Bot Pol. 1966;35:7-16.

Tourte Y. Observations sur l’infrastructures des elaioplastes chez Haemanthus albiflos. Cr Soc Biol. 1964;158:1712-1715.

Tourte Y. Considerations sur la nature, l’origine, et le comportement des elaioplastes chez les Monocotylèdones. Österr Bot Z. 1966;158:1712-1715.

Faull AF. Elaioplasts in Iris: a morphological study. J Arnold Arbor. 1935;16:225-267.

Goodman JM. The gregarious lipid droplet. J Biol Chem. 2008;283(42):28005-28009. doi:10.1074/jbc.R800042200.

Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol. 2008;130(2):263-279. doi:10.1007/s00418-008-0449-0.

Guo Y, Cordes KR, Farese RV, Walther TC. Lipid droplets at a glance. J Cell Sci. 2009;122(6):749-752. doi:10.1242/jcs.037630.

Bozza PT, Magalhães KG, Weller PF. Leukocyte lipid bodies – biogenesis and functions in inflammation. Biochim Biophys Acta. 2009;1791(6):540-551. doi:10.1016/j.bbalip.2009.01.005.

Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008;148(1):89-96. doi:10.1104/pp.108.123042.

Bhatla SC, Kaushik V, Yadav MK. Use of oil bodies and oleosins in recombinant protein production and other biotechnological applications. Biotech Adv. 2010;28(3):293-300. doi:10.1016/j.biotechadv.2010.01.001.

Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic. 2008;9(3):338-352. doi:10.1111/j.1600-0854.2007.00689.x.

Raciborski M. Elajoplasty liliowatych. Kraków: Akademia Umiejętności; 1895.

Kwiatkowska M. Fine structure of the lipotubuloids (elaioplasts) in Ornithogalum umbellatum L. Acta Soc Bot Pol. 1971;40:451-465.

Kwiatkowska M. Fine structure of the lipotubuloids (elaioplasts) in Ornithogalum umbellatum in the course of their development. Acta Soc Bot Pol. 1971;40:529-537.

Kwiatkowska M. Changes in the diameter of microtubules connected with the autonomous rotary motion of the lipotubuloids (elaioplasts). Protoplasma. 1972;75(4):345-357.

Kwiatkowska M. The incorporation of 3H-palmitic acid into Ornithogalum umbellatum lipotubuloids, which are a cytoplasmic domain rich in lipid bodies and microtubules. Light and EM autoradiography. Acta Soc Bot Pol. 2004;73:181-186.

Kwiatkowska M, Popłońska K, Stepiński D. Actin filaments connected with the microtubules of lipotubuloids, cytoplasmic domains rich in lipid bodies and microtubules. Protoplasma. 2005;226(3-4):163-167. doi:10.1007/s00709-005-0125-3.

Kwiatkowska M, Popłońska K, Stepiński D, Hejnowicz Z. Microtubules with different diameter, protofilament number and protofilament spacing in Ornithogalum umbellatum ovary epidermis cells. Folia Histochem Cytobiol. 2006;44(2):133-138.

Kwiatkowska M, Poplonska K, Kazmierczak A, Stepinski D, Rogala K, Polewczyk K. Role of DNA endoreduplication, lipotubuloids, and gibberellic acid in epidermal cell growth during fruit development of Ornithogalum umbellatum. J Exp Bot. 2007;58(8):2023-2031. doi:10.1093/jxb/erm071.

Kwiatkowska M, Popłońska K, Stępiński D, Wojtczak A. Lipotubuloids – domains of cytoplasm rich in lipid bodies, entwined by the microtubule system, and active in lipid synthesis. Adv Cell Biol. doi:10.2478/v10052-009-0001-y.

Kwiatkowska M, Stepiński D, Popłońska K. Diameters of microtubules change during rotation of the lipotubuloids of Ornithogalum umbellatum stipule epidermis as a result of varying protofilament monomers sizes and distance between them. Cell Biol Int. 2009;33(12):1245-1252. doi:10.1016/j.cellbi.2009.08.012.

Zimmermann A. Über die Elaioplasten. Beitr Morphol Physiol Zelle. 1893;1:185-197.

Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963;17:208-212.

Bendayan M, Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem. 1983;31(1):101-109. doi:10.1177/31.1.6187796.

Politis J. Sugli elaioplasti nelle mono- e dicotiledoni. Rendiconti Atti Accad Lincei. 1911;20(1):599-603.

Guillermond A. Sur l’origine et la signification des éleoplastes. Cr Soc Biol. 1922;86:437-440.

Wóycicki Z. Sur les cristalloides des noyaux at les "eleoplastes" chez Ornithogalum caudatum. B Inter Acad Pol Sci Lett. 1929;25:27-39.

Weber F. "Elajoplasten" fehlen den Schließzellen v Hosta plantaginea. Protoplasma. 1955;44:460-463.

Thaler I. Studien an plastidenähnlichen Gebiden (Elaioplasten und Sterinoplasten). Protoplasma. 1956;46:743-754.

Luxenburgowa A. Recherches cytologiques sur les grain de pollen chez les Malvacees. B Inter Acad Pol Sci Lett. 1928;B:363-395.

Kwiatkowska M. Występowanie elajoplastów w skórce rodzaju Gentiana. Zeszyty Naukowe UŁ. 1959;2(5):69-87.

Riss MM. Die Antherenhaare von Cyclanthera pedata (Schrad.) und einiger anderer Cucurbitaceen. Flora. 1918;111/112:541-559.

Górska-Brylass A. "Elajoplasts" w ziarnach pyłkowych Campanula. Acta Soc Bot Pol. 1962;31:409-418.

Beer R. On elaioplasts. Ann Bot. 1909;23(1):63-72.

Biedermann W. Der Lipoidgehalt bei Monotropa hypopithys u. Orobanche sporose. Flora. 1920;113:133-154.

Kwiatkowska M, Stępiński D, Popłońska K, Wojtczak A, Polit JT. "Elaioplasts" of Haemanthus albiflos are true lipotubuloids: cytoplasmic domains rich in lipid bodies entwined by microtubules. Acta Physiol Plant. 2010;32(6):1189-1196. doi:10.1007/s11738-010-0514-x.

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Molecular biology of the cell. 3rd ed. New York: Garland Publishing; 1994.

Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem. 2009;109(3):683-693. doi:10.1111/j.1471-4159.2009.06013.x.

Ikegami K, Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Letters. 2009;583(12):1957-1963. doi:10.1016/j.febslet.2009.05.003.

Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol. 2010;22(1):104-111. doi:10.1016/j.ceb.2009.11.008.

Poulain FE, Sobel A. The microtubule network and neuronal morphogenesis: Dynamic and coordinated orchestration through multiple players. Mol Cell Neurosci. 2010;43(1):15-32. doi:10.1016/j.mcn.2009.07.012.

Kwiatkowska M, Stępiński D, Polit JT, Popłońska K, Wojtczak A. Microtubule heterogeneity of Ornithogalum umbellatum ovary epidermal cells: non-stable cortical microtubules and stable lipotubuloid microtubules. Folia Histochem Cytobiol. 2011;49(2):285-290.

Pacheco P, Vieira-de-Abreu A, Gomes RN, Barbosa-Lima G, Wermelinger LB, Maya-Monteiro CM, et al. Monocyte chemoattractant protein-1/CC chemokine ligand 2 controls microtubule-driven biogenesis and leukotriene B4-synthesizing function of macrophage lipid bodies elicited by innate immune response. J Immunol. 2007;179(12):8500-8508.

Czabany T, Athenstaedt K, Daum G. Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta. 2007;1771(3):299-309. doi:10.1016/j.bbalip.2006.07.001.

Brasaemle D, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 2004;279(45):46835-46842. doi:10.1074/jbc.M409340200.

Cermelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr Biol. 2006;16(18):1783-1795. doi:10.1016/j.cub.2006.07.062.

Wan HC, Melo RCN, Jin Z, Dvorak AM, Weller PF. Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies. FASEB J. 2007;21(1):167-178. doi:10.1096/fj.06-6711com.

Galatis B, Apostolakos P, Katsaros C. Ultrastructural studies on the oil bodies of Marchantia paleacea Bert. I. Early stages of oil-body cell differentiation: origination of the oil body. Can J Bot. 1978;56(18):2252-2267. doi:10.1139/b78-272.

Smith MT. Studies on the anhydrous fixation of dry seeds of lettuce (Lactuca sativa L.). New Phytol. 1991;119(4):575-584.

Delivopoulos SG. Ultrastructure of cytocarp development in Gelidium robustum (Gelidiaceae: Gelidiles: Rhodophyta). Mar Biol. 2003;142:659-667.

Franke WW, Hergt M, Grund C. Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell. 1987;49(1):131-141. doi:10.1016/0092-8674(87)90763-X.

Almahbobi G, Williams LJ, Hall PF. Attachment of steroidogenic lipid droplets to intermediate filaments in adrenal cells. J Cell Sci. 1992;101(2):383-393.

Dvorak AM, Morgan ES, Weller PF. Ultrastructural immunolocalization of basic fibroblast growth factor to lipid bodies and secretory granules in human mast cells. Histochem J. 2001;33(7):397-402.

Akkoyunlu G, Korgun ET, Celik-Ozenci C, Seval Y, Demir D, Ustünel I. Distribution patterns of leucocyte subpopulations expressing different cell markers in the cumulus-oocyte complexes of pregnant and pseudopregnant mice. Reprod Fertil Dev. 2003;15(7-8):389-395. doi:10.1071/RD03037.

LaPointe JL, Rodríguez EM. Fat mobilization and ultrastructural changes in the peritoneal fat body of the lizard, Klauberina riversiana, in response to long photoperiod and exogenous estrone or progesterone. Cell Tissue Res. 1974;155(2). doi:10.1007/BF00221352.


Comments on this article

View all comments