Mathematical model for tissue stresses in growing plant cells and organs

Mariusz Pietruszka, Sylwia Lewicka

Abstract


In this study we propose a simple mathematical model based on the equilibrium equation for the materials deformed elastically. Owing to the turgor pressure of the cells, the peripheral walls of the outer tissue are under tension, while the extensible inner tissue is under compression. This well known properties of growing multicellular plant organs can be derived from the equation for equilibrium. The analytic solutions may serve as a good starting point for modeling the growth of a single plant cell or an organ.

Keywords


equilibrium equation; growing plant cell/organ; tissue stresses

Full Text:

PDF


DOI: https://doi.org/10.5586/asbp.2009.003

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society