Transcriptomic landscape of Dendrobium huoshanense and its genes related to polysaccharide biosynthesis

Rongchun Han, Dongmei Xie, Xiaohui Tong, Wei Zhang, Gang Liu, Daiyin Peng, Nianjun Yu


Dendrobium huoshanense has long been used to treat various diseases in oriental medicine. In order to study its gene expression profile, transcripts involved in the biosynthesis of precursors of polysaccharides, as well as mechanisms underlining morphological differences between wild and cultivated plants, three organs of both wild type and cultivated D. huoshanense were collected and sequenced by Illumina HiSeq4000 platform, yielding 919,409,540 raw reads in FASTQ format. After Trinity de novo assembly and quality control, 241,242 nonredundant contigs with the average length of 967.5 bp were generated. qRT-PCR experiment on the selected transcripts showed the transcriptomic data were reliable. BLASTx was conducted against NR, SwissProt, String, Pfam, and KEGG. Gene ontology annotation revealed more than 40,000 contigs assigned to catalytic activity and metabolic process, suggesting its dynamic physiological activities. By searching KEGG pathway, six genes potentially involved in mannose biosynthetic pathway were retrieved. Gene expression analysis for stems between wild and cultivated D. huoshanense resulted in 956 genes differentially expressed. Simple sequence repeats (SSRs) analysis revealed 143 SSRs with the unit size of 4 and 3,437 SSRs the size of 3. The obtained SSRs are the potential molecular markers for discriminating distinct cultivars of D. huoshanense.


Dendrobium huoshanense; transcriptomic analysis; RNA-Seq; biosynthesis

Full Text:



Chinese Pharmacopoeia Commission. Chinese pharmacopeia. Beijing: The Medicine Science and Technology Press of China; 2015.

Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, et al. Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol. 2012;93(5):1795–1803.

Fan Y, He X, Zhou S, Luo A, He T, Chun Z. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Int J Biol Macromol. 2009;45(2):169–173.

Jin Q, Jiao C, Sun S, Song C, Cai Y, Lin Y, et al. Metabolic analysis of medicinal Dendrobium officinale and Dendrobium huoshanense during different growth years. PLoS One. 2016;11(1):e0146607.

Tian CC, Zha XQ, Luo JP. A polysaccharide from Dendrobium huoshanense prevents hepatic inflammatory response caused by carbon tetrachloride. Biotechnol Biotechnol Equip. 2015;29(1):132–138.

Si HY, Chen NF, Chen ND, Huang C, Li J, Wang H. Structural characterisation of a water-soluble polysaccharide from tissue-cultured Dendrobium huoshanense C. Z. Tang et S. J. Cheng. Nat Prod Res. 2018;32(3):252–260.

Kudo Y, Tanaka A, Yamada K. Dendrobine, an antagonist of beta-alanine, taurine and of presynaptic inhibition in the frog spinal cord. Br J Pharmacol. 1983;78(4):709–715.

Li R, Liu T, Liu M, Chen F, Liu S, Yang J. Anti-influenza A virus activity of dendrobine and its mechanism of action. J Agric Food Chem. 2017;65(18):3665–3674.

Kende AS, Bentley TJ, Mader RA, Ridge D. A simple total synthesis of (plus or minus)-dendrobine. J Am Chem Soc. 1974;96(13):4332–4334.

Yamada K, Suzuki M, Hayakawa Y, Aoki K, Nakamura H. Total synthesis of (+−)-dendrobine. J Am Chem Soc. 1972;94(23):8278–8280.

Lynch VM, Li W, Martin SF, Davis BE. The structure of a key intermediate in the total synthesis of dendrobine. Acta Crystallogr C. 1991;47(Pt 2):439–440.

Kreis LM, Carreira EM. Total synthesis of (−)-dendrobine. Angew Chem Int Ed Engl. 2012;51(14):3436–3439.

Li Q, Ding G, Li B, Guo SX. Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile Lindl. infected with mycorrhizal fungus MF23 (Mycena sp.). Sci Rep. 2017;7(1):316.

Yamazaki M, Matsuo M, Arai K. Biosynthesis of dendrobine. Chem Pharm Bull. 1966;14(9):1058–1059.

Guo X, Li Y, Li C, Luo H, Wang L, Qian J, et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene. 2013;527(1):131–138.

Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, et al. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant. 2015;8(6):922–934.

Han R, Rai A, Nakamura M, Suzuki H, Takahashi H, Yamazaki M, et al. De novo deep transcriptome analysis of medicinal plants for gene discovery in biosynthesis of plant natural products. Methods Enzymol. 2016;576:19–45.

Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–470.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2015;4:30.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–1123.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652.

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114.

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(2 suppl):ii215–ii225.

Magrane M, UniProt C. UniProt knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29.

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676.

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140.

Faircloth BC. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour. 2008;8(1):92–94.

Han R, Takahashi H, Nakamura M, Yoshimoto N, Suzuki H, Shibata D, et al. Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Front Plant Sci. 2015;6:426.

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152.

Serres-Giardi L, Belkhir K, David J, Glemin S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell. 2012;24(4):1379–1397.

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–W129.

Tang Z, Cheng S. A study on the raw plants for the Chinese traditional medicine “Huoshan Shi-hu”. Bulletin of Botanical Research. 1984;4(3):141–145.