Transcriptomic landscape of Dendrobium huoshanense and its genes related to polysaccharide biosynthesis

Rongchun Han, Dongmei Xie, Xiaohui Tong, Wei Zhang, Gang Liu, Daiyin Peng, Nianjun Yu

Abstract


Dendrobium huoshanense has long been used to treat various diseases in oriental medicine. In order to study its gene expression profile, transcripts involved in the biosynthesis of precursors of polysaccharides, as well as mechanisms underlining morphological differences between wild and cultivated plants, three organs of both wild type and cultivated D. huoshanense were collected and sequenced by Illumina HiSeq4000 platform, yielding 919,409,540 raw reads in FASTQ format. After Trinity de novo assembly and quality control, 241,242 nonredundant contigs with the average length of 967.5 bp were generated. qRT-PCR experiment on the selected transcripts showed the transcriptomic data were reliable. BLASTx was conducted against NR, SwissProt, String, Pfam, and KEGG. Gene ontology annotation revealed more than 40,000 contigs assigned to catalytic activity and metabolic process, suggesting its dynamic physiological activities. By searching KEGG pathway, six genes potentially involved in mannose biosynthetic pathway were retrieved. Gene expression analysis for stems between wild and cultivated D. huoshanense resulted in 956 genes differentially expressed. Simple sequence repeats (SSRs) analysis revealed 143 SSRs with the unit size of 4 and 3,437 SSRs the size of 3. The obtained SSRs are the potential molecular markers for discriminating distinct cultivars of D. huoshanense.

Keywords


Dendrobium huoshanense; transcriptomic analysis; RNA-Seq; biosynthesis

Full Text:

PDF

References


Chinese Pharmacopoeia Commission. Chinese pharmacopeia. Beijing: The Medicine Science and Technology Press of China; 2015.

Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, et al. Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol. 2012;93(5):1795–1803. https://doi.org/10.1007/s00253-011-3829-7

Fan Y, He X, Zhou S, Luo A, He T, Chun Z. Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Int J Biol Macromol. 2009;45(2):169–173. https://doi.org/10.1016/j.ijbiomac.2009.04.019

Jin Q, Jiao C, Sun S, Song C, Cai Y, Lin Y, et al. Metabolic analysis of medicinal Dendrobium officinale and Dendrobium huoshanense during different growth years. PLoS One. 2016;11(1):e0146607. https://doi.org/10.1371/journal.pone.0146607

Tian CC, Zha XQ, Luo JP. A polysaccharide from Dendrobium huoshanense prevents hepatic inflammatory response caused by carbon tetrachloride. Biotechnol Biotechnol Equip. 2015;29(1):132–138. https://doi.org/10.1080/13102818.2014.987514

Si HY, Chen NF, Chen ND, Huang C, Li J, Wang H. Structural characterisation of a water-soluble polysaccharide from tissue-cultured Dendrobium huoshanense C. Z. Tang et S. J. Cheng. Nat Prod Res. 2018;32(3):252–260. https://doi.org/10.1080/14786419.2017.1350670

Kudo Y, Tanaka A, Yamada K. Dendrobine, an antagonist of beta-alanine, taurine and of presynaptic inhibition in the frog spinal cord. Br J Pharmacol. 1983;78(4):709–715. https://doi.org/10.1111/j.1476-5381.1983.tb09424.x

Li R, Liu T, Liu M, Chen F, Liu S, Yang J. Anti-influenza A virus activity of dendrobine and its mechanism of action. J Agric Food Chem. 2017;65(18):3665–3674. https://doi.org/10.1021/acs.jafc.7b00276

Kende AS, Bentley TJ, Mader RA, Ridge D. A simple total synthesis of (plus or minus)-dendrobine. J Am Chem Soc. 1974;96(13):4332–4334. https://doi.org/10.1021/ja00820a052

Yamada K, Suzuki M, Hayakawa Y, Aoki K, Nakamura H. Total synthesis of (+−)-dendrobine. J Am Chem Soc. 1972;94(23):8278–8280. https://doi.org/10.1021/ja00778a083

Lynch VM, Li W, Martin SF, Davis BE. The structure of a key intermediate in the total synthesis of dendrobine. Acta Crystallogr C. 1991;47(Pt 2):439–440. https://doi.org/10.1107/S0108270190007594

Kreis LM, Carreira EM. Total synthesis of (−)-dendrobine. Angew Chem Int Ed Engl. 2012;51(14):3436–3439. https://doi.org/10.1002/anie.201108564

Li Q, Ding G, Li B, Guo SX. Transcriptome analysis of genes involved in dendrobine biosynthesis in Dendrobium nobile Lindl. infected with mycorrhizal fungus MF23 (Mycena sp.). Sci Rep. 2017;7(1):316. https://doi.org/10.1038/s41598-017-00445-9

Yamazaki M, Matsuo M, Arai K. Biosynthesis of dendrobine. Chem Pharm Bull. 1966;14(9):1058–1059. https://doi.org/10.1248/cpb.14.1058

Guo X, Li Y, Li C, Luo H, Wang L, Qian J, et al. Analysis of the Dendrobium officinale transcriptome reveals putative alkaloid biosynthetic genes and genetic markers. Gene. 2013;527(1):131–138. https://doi.org/10.1016/j.gene.2013.05.073

Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, et al. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant. 2015;8(6):922–934. https://doi.org/10.1016/j.molp.2014.12.011

Han R, Rai A, Nakamura M, Suzuki H, Takahashi H, Yamazaki M, et al. De novo deep transcriptome analysis of medicinal plants for gene discovery in biosynthesis of plant natural products. Methods Enzymol. 2016;576:19–45. https://doi.org/10.1016/bs.mie.2016.03.001

Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467–470. https://doi.org/10.1126/science.270.5235.467

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2015;4:30. https://doi.org/10.1186/s13742-015-0069-2

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–1123. https://doi.org/10.1101/gr.089532.108

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652. https://doi.org/10.1038/nbt.1883

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–D114. https://doi.org/10.1093/nar/gkr988

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(2 suppl):ii215–ii225. https://doi.org/10.1093/bioinformatics/btg1080

Magrane M, UniProt C. UniProt knowledgebase: a hub of integrated protein data. Database. 2011;2011:bar009.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29. https://doi.org/10.1038/75556

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. https://doi.org/10.1186/1471-2105-4-41

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. https://doi.org/10.1186/1471-2105-12-323

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

Faircloth BC. MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour. 2008;8(1):92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x

Han R, Takahashi H, Nakamura M, Yoshimoto N, Suzuki H, Shibata D, et al. Transcriptomic landscape of Pueraria lobata demonstrates potential for phytochemical study. Front Plant Sci. 2015;6:426. https://doi.org/10.3389/fpls.2015.00426

Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152. https://doi.org/10.1093/bioinformatics/bts565

Serres-Giardi L, Belkhir K, David J, Glemin S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell. 2012;24(4):1379–1397. https://doi.org/10.1105/tpc.111.093674

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–W129. https://doi.org/10.1093/nar/gkx382

Tang Z, Cheng S. A study on the raw plants for the Chinese traditional medicine “Huoshan Shi-hu”. Bulletin of Botanical Research. 1984;4(3):141–145.