Fibonacci spirals in a brown alga [Sargassum muticum (Yendo) Fensholt] and in a land plant [Arabidopsis thaliana (L.) Heynh.]: a case of morphogenetic convergence

Alexis Peaucelle, Yves Couder

Abstract


In this article, the morphology of a brown alga is revisited and compared to the phyllotaxis of land plants. The alga, Sargassum muticum (Yendo) Fensholt has a highly organized thallus with a stipe, the stem-like main axis, and hierarchically organized lateral branches of successive orders. Around each of these axes, the lateral organs: blades, side-branches, and receptacles grow in a spiral disposition. As in land plants, this organization is related to an apical mode of growth. Measurements performed along the mature differentiated axes as well as in their meristematic regions confirm the similarity of the large-scale organization of this brown alga with that of the land plants. In particular, the divergence angle between successive elements has similar values and it results from the existence around the meristem of parastichies having the same Fibonacci ordering. This is remarkable in view of the fact that brown algae (Phaeophyceae) and land plants (Embryophyta) are two clades that diverged approximately 1800 million years ago when they were both unicellular organisms. We argue that the observed similarity results from a morphogenetic convergence. This is in strong support of the genericity and robustness of self-organization models in which similar structures, here Fibonacci related spirals, can be obtained in various situations in which the genetic and physiological implementation of development can be of a different nature.

Keywords


phyllotaxis; Fibonacci; Sargassum; brown algae; self-organization; convergence

Full Text:

PDF

References


Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D. A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004;21:809–818. https://doi.org/10.1093/molbev/msh075

Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, et al. The tree of eukaryotes. Trends Ecol Evol. 2005;20:671–676. https://doi.org/10.1016/j.tree.2005.09.005

Hedges SB, Marin J, Suleski M, Paymer M, Kumar S., Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. 2015;32:835–845. https://doi.org/10.1093/molbev/msv037

Church AH. On the interpretation of phenomena of phyllotaxis. London: Humphrey Milford and Oxford University Press; 1920. (Botanical Memoirs).

Shaw AJ, Szövényi P, Shaw B. Bryophyte diversity and evolution: windows into the early evolution of land plants. Am J Bot. 2011;98:352–369. https://doi.org/10.3732/ajb.1000316

Schimper KF. Beschreibung des Symphytum Zeyheri und seiner zwei deutschen Verwandten der S. bulborum Schimp und S. tuberosum Jacq. Heidelberg: Winter; 1835.

Braun A. Vergleichende Untersuchung über die Ordnung der Schuppen an den Tannenzapfen. Nova Acta Academiae Caesareae Leopoldino-Carolinae. 1831;15:195–402. https://doi.org/10.5962/bhl.title.69200

Bravais L, Bravais A. Essai sur la disposition des feuilles curvisériées. Annales des Sciences Naturelles. Botanique. 1837;7:42–110.

Hofmeister W. Allgemeine Morphologie der Gewachse, Handbuch der Physiologischen Botanik. Leipzig: Engelmann; 1868.

Richards FJ. Phyllotaxis: its quantitative expression and relation to growth in the apex. Philos Trans R Soc Lond B. 1951;235:510–564. https://doi.org/10.1098/rstb.1951.0007

Snow M, Snow R, Minimum area and leaf determination. Proc Proc R Soc Lond B Biol Sci. 1952;139:545–566. https://doi.org/10.1098/rspb.1952.0034

van Iterson G. Mathematische und microscopisch-anatomische Studien über Blattstellungen, nebst Betraschungen ûber den Schalenbau der Miliolinen. Jena: G. Fisher; 1907.

Douady S, Couder Y. Phyllotaxis as a physical self-organized growth process. Phys Rev Lett. 1992;68:2098–2101. https://doi.org/10.1103/PhysRevLett.68.2098

Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part I: the spiral modes resulting from time-periodic iterations. J Theor Biol. 1996;178:255–273. https://doi.org/10.1006/jtbi.1996.0024

Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part II: the spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J Theor Biol. 1996;178:275–294. https://doi.org/10.1006/jtbi.1996.0025

Douady S, Couder Y. Phyllotaxis as a dynamical self organizing process Part III: the simulation of the transient regimes of ontogeny. J Theor Biol. 1996;178:295–312. https://doi.org/10.1006/jtbi.1996.0026

Couder Y. Initial transitions, order and disorder in phyllotactic patterns: the ontogeny of Helianthus annuus, a case study. Acta Soc Bot Pol. 1998;67:129–150. https://doi.org/10.5586/asbp.1998.016

Fritsch FE. The structure and reproduction of the algae. Cambridge: Cambridge University Press; 1945.

Charrier B, Le Bail A, de Reviers B. Plant proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci. 2012;17(8):468–477. https://doi.org/10.1016/j.tplants.2012.03.003

Bogaert KA, Arun A, Coelho SM, de Clerck O. Brown algae as a model for plant organogenesis. Methods Mol Biol. 2013;959:97–125. https://doi.org/10.1007/978-1-62703-221-6_6

Jensen JB. Morphological studies in Cystoseiraceae and Sargassaceae (Phaeophyceae), with special reference to apical organization. Berkeley, CA: University of California Press; 1974. (University of California Publications in Botany; vol 68).

Popper ZA, Michel G, Herve C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62:567–590. https://doi.org/10.1146/annurev-arplant-042110-103809

Agardh CA. Species algarum rite cognitae, cum synonymis differentiis specificis et descriptionibus succintis. Vol. 1, Part 1. Lundae: E. Mavritii; 1820.

Yoshida T. Japanese species of Sargassum subgenus Bactrophycus (Phaeophyta, Fucales). Journal of the Faculty of Science, Hokkaido University. Series 5, Botany. 1983:13(2):99–246.

Yoshida T, Majima T, Marui M, Apical organization of some genera of Fucales (Phaeophyta) from Japan. Journal of the Faculty of Science, Hokkaido University. Series 5, Botany. 1983;13(1):49–56.

Norton TA. The growth and development of Sargassum muticum. J Exp Mar Bio Ecol. 1977;26:41–53. https://doi.org/10.1016/0022-0981(77)90079-X

Kane DF, Chamberlain AHL. Laboratory growth studies on Sargassum muticum (Yendo) Fensholt. I. Seasonal growth of whole plants and lateral sections. Botanica Marina. 1978;22:1–9. https://doi.org/10.1515/botm.1979.22.1.1

Chamberlain HL, Gorham J, Kane DF, Lewey SA. Laboratory growth studies on Sargassum muticum (Yendo) Fensholt. II. Apical dominance. Botanica Marina. 1978;22:11–19.

Critchley AT. Sargassum muticum: a morphological description of European material. J Mar Biol Assoc U K. 2009;63:813–824. https://doi.org/10.1017/S002531540007123X

Peaucelle A, Morin H, Traas J, Laufs P. Plants expressing a miR164-resistant CUC2 gene reveal the importance of postmeristematic maintenance of phyllotaxy in Arabidopsis. Development. 2007;134(6):1045–1050. https://doi.org/10.1242/dev.02774

Yang W, Schuster C, Beahan CT, Charoensawan V, Peaucelle A, Basic A, et al. Regulation of meristem morphogenesis by cell wall synthases in Arabidopsis. Curr Biol. 2016;26:1404–1415. https://doi.org/10.1016/j.cub.2016.04.026

Mirabet V, Besnard F, Vernoux T, Boudaoud A. Noise and robustness in phyllotaxis. PLoS Comput Biol. 2012;8(2):e1002389. https://doi.org/10.1371/journal.pcbi.1002389

Refahi YG, Farcot E, Jean-Marie A, Pulkkinen M, Vernoux T, Godin C. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLife. 2016;5:e14093. https://doi.org/10.7554/eLife.14093

Klemm MF, Hallam ND. Branching patterns and growth in Cystophora (Fucales, Phaeophyta). Phycologia. 1987;26:252–261. https://doi.org/10.2216/i0031-8884-26-2-252.1

Katsaros CI. Apical cells of brown algae with particular reference to Sphacelariales, Dictyotales and Fucales. Phycological Res. 1995;43:43–59. https://doi.org/10.1111/j.1440-1835.1995.tb00004.x

D’Arcy Thompson W. On growth and form. Vols 1 and 2. Cambridge: Cambridge University Press; 1917. https://doi.org/10.5962/bhl.title.11332

Couder Y. Viscous fingering as an archetype for growth patterns. In: Batchelor GK, Moffat HK, Worster MG, editors. Perspectives in fluid dynamics. Cambridge: Cambridge University Press; 2000. p. 53–104.

Couder Y. Patterns with open branches or closed networks: growth in scalar or tensorial fields. In: Fleury V, Gouyet JF, Leonetti M, editors. Branching in nature. Berlin: EDP Sciences and Springer; 2001. p. 1–22. https://doi.org/10.1007/978-3-662-06162-6_1

Kylin H. Studien über die Entwicklungsgeschichte der Florideen. Stockholm: Almqvist & Wiksells; 1923. [Kungliga Svenska Vetenskapsakademiens Handlingar; vol 63(11)].

Katsaros C, Karyophyllis D, Galatis B. Cytoskeleton and morphogenesis in brown algae. Ann Bot. 2006;97:679–693. https://doi.org/10.1093/aob/mcl023

Hamant O, Heisler MG, Jönsson H. Krupinski P, Uyttewaal M, Bokov P, et al. Developmental patterning by mechanical signals in Arabidopsis. Science. 2008;322:1650–1655. https://doi.org/10.1126/science.1165594

Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 2010;8:e1000516. https://doi.org/10.1371/journal.pbio.1000516

Peaucelle A, Louvet R, Johansen JN, Salsac F, Morin H, Fournet F, et al. Transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis. Development. 2011;138:4733–4741. https://doi.org/10.1242/dev.072496

Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol. 2011;21:1720–1726. https://doi.org/10.1016/j.cub.2011.08.057

Augier, H. Les hormones des algues. Etat actuel des connaissances. VII. Applications conclusions et bibliographie. Botanica Marina. 1978;21:175–197. https://doi.org/10.1515/botm.1978.21.3.175

Bradley PM. Plant hormones do have a role in controlling growth and development of algae. J Phycol. 1991;27:317–321. https://doi.org/10.1111/j.0022-3646.1991.00317.x

Tarakhovskaya ER, Maslov YI, Shishova MF. Phytohormones in algae. Russ J Plant Physiol. 2007;54:163–170. https://doi.org/10.1134/S1021443707020021

Sun H, Basu S, Brady SR, Luciano RL, Muday GK. Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. Plant Physiol. 2004;135:266–278. https://doi.org/10.1104/pp.103.034900




DOI: https://doi.org/10.5586/asbp.3526

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society