Tracking of intercalary DNA sequences integrated into tandem repeat arrays in rye Secale vavilovii

Magdalena Achrem, Anna Kalinka

Abstract


The structure of repetitive sequences of the JNK block present in the pericentromeric region of the 2RL chromosome was studied in Secale vavilovii. Amplification of sequences present between the JNK sequences led to the identification of seven abnormal DNA fragments. Two of these fragments showed high similarity to the glutamate 5-kinase gene and putative alcohol dehydrogenase gene of trypanosomatid from the genus Leishmania, whose presence can be explained by horizontal gene transfer (HGT). Other fragments were similar to mitochondrial gene for ribosomal protein S4 in plants and to the glycoprotein (G) gene of the IHNV virus. Presumably, they are pseudogenes inserted into the JNK heterochromatin region. Within this region, also fragments similar to the rye repetitive sequence and chromosome 3B in wheat were found. There is no known mechanism that would explain how foreign sequences were inserted into the block region of tandem repetitive sequences of the JNK family.

Keywords


intercalary sequences; Secale; repetitive sequences; JNK family; heterochromatin; horizontal gene transfer

Full Text:

PDF

References


Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome function. Biol Rev. 2005;80:227–250. https://doi.org/10.1017/S1464793104006657

Bennetzen JL. Patterns in grass genome evolution. Curr Opin Plant Biol. 2007;10:176–181. https://doi.org/10.1016/j.pbi.2007.01.010

Morgante M, de Paoli E, Radovic S. Transposable elements and the plant pan-genomes. Curr Opin Plant Biol. 2007;10:149–155. https://doi.org/10.1016/j.pbi.2007.02.001

Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and proportion of repeated nucleotide-sequence DNA in plants. Biochem Genet. 1974;12:257–269. https://doi.org/10.1007/BF00485947

Murray MG, Peters DL, Thompson WF. Ancient repeated sequences in the pea and mung bean genomes and implications for genome evolution. J Mol Evol. 1981;17:31–42. https://doi.org/10.1007/BF01792422

SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Behan A, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;273:765–769. https://doi.org/10.1126/science.274.5288.765

Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–1269. https://doi.org/10.1101/gr.5290206

Neumann P, Koblizkova A, Navratilova A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–1056. https://doi.org/10.1534/genetics.106.056259

Mehrotra S, Goyal V. Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genomics Proteomics Bioinformatics. 2014;12:164–171. https://doi.org/10.1016/j.gpb.2014.07.003

Li W, Zhang P, Fellers JP, Friebe B, Gill BS. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 2004;40:500–511. https://doi.org/10.1111/j.1365-313X.2004.02228.x

Plohl M. Those mysterious sequences of satellite DNAs. Period Biol. 2010;112:403–410.

Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet. 2007;8:241–259. https://doi.org/10.1146/annurev.genom.8.080706.092416

Jiang J, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci. 2003;8:570–575. https://doi.org/10.1016/j.tplants.2003.10.011

Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10. https://doi.org/10.1186/gb-2013-14-1-r10

Dechyeva D, Schmidt T. Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res. 2006;14:881–897. https://doi.org/10.1007/s10577-006-1096-8

Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas-Targa F, et al. The insulation of genes from external enhancers and silencing chromatin. Proc Natl Acad Sci USA. 2002;99:16433–16437. https://doi.org/10.1073/pnas.162342499

Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. https://doi.org/10.1146/annurev.genet.33.1.479

Heslop-Harrison JS. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell. 2000;12:617–635. https://doi.org/10.1105/tpc.12.5.617

Rao SR, Trivedi S, Emmanuel D, Merita K, Hynniewta M. DNA repetitive sequences-types, distribution and function: a review. J Cell Mol Biol. 2010;8:1–11. https://doi.org/10.1016/j.gpb.2014.07.003

Nagaki K, Tsujimoto H, Saskuma T. A novel repetitive sequence, termed the JNK repeat family, located on an extra heterochromatic region of chromosome 2R of Japanese rye. Chromosome Res. 1999;6:95–101. https://doi.org/10.1023/A:1009226612818

Rogalska SM, Achrem M, Słomińska-Walkowiak R, Filip E, Skuza L, Pawłowska J, et al. Polymorphism of heterochromatin bands on chromosomes of rye Secale vavilovii Grossh. lines. Acta Biol Crac Ser Bot. 2002;44:111–117.

Kalinka A, Achrem M. Analysis of the flanking sequences of the heterochromatic JNK region in Secale vavilovii Grossh. chromosomes. Biol Plant. 2015;59:637–644. https://doi.org/10.1007/s10535-015-0531-0

Achrem M, Rogalska SM, Kalinka A. Possible ancient origin of heterochromatic JNK sequences in chromosomes 2R of Secale vavilovii Grossh. J Appl Genet. 2010;51(1):1. https://doi.org/10.1007/BF03195704

Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, et al. Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004;36:138–145. https://doi.org/10.1038/ng1289

Sunker R, Girke T, Zhu JK. Identification and characterization of endogenous small interfering RNAs from rice. Nucleic Acids Res. 2005;33:4443–4454. https://doi.org/10.1093/nar/gki758

Siomi H, Siomi MC. Interactions between transposable elements and Argonautes have (probably) been shaping the Drosophila genome throughout evolution. Curr Opin Genet Dev. 2008;18:181–187. https://doi.org/10.1016/j.gde.2008.01.002

Tomita M, Okutani A, Beiles A, Nevo E. Genomic, RNA, and ecological divergences of the Revolver transposon-like multi-gene family in Triticeae. BMC Evol Biol. 2011;11:269. https://doi.org/10.1186/1471-2148-11-269

Rogalska SM, Cybulska-Augustyniak J, Mroczyk W, Cierniewska A, Obuchowski W. Investigations of contents of proteins and pentosans in kernels of rye Secale vavilovii Grossh. Bulletin IHAR. 1993;187:93–98.

Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7:203–214. https://doi.org/10.1089/10665270050081478

Kalendar R, Lee D, Schulman AH. FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. DNA cloning and assembly methods. Methods Mol Biol. 2014;1116:271–302. https://doi.org/10.1007/978-1-62703-764-8_18

Kalendar R, Lee D, Schulman AH. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics. 2011;98(2):137–144. https://doi.org/10.1016/j.ygeno.2011.04.009

Camargo EP. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol. 1999;42:29–112. https://doi.org/10.1016/S0065-308X(08)60148-7

Daniels JP, Gull K, Wickstead B. Cell biology of the trypanosome genome. Microbiol Mol Biol Rev. 2010;74:552–569. https://doi.org/10.1128/MMBR.00024-10

Dollet M. Plant diseases caused by flagellate protozoa (Phytomonas). Annu Rev Phytopathol. 1984;22:115–125. https://doi.org/10.1146/annurev.py.22.090184.000555

Dollet, M. Phloem-restricted trypanosomatids form a clearly characterized monophyletic group among trypanosomatids isolated from plants. Int J Parasitol. 2001;31:459–467. https://doi.org/10.1016/S0020-7519(01)00157-6

Camargo EP, Wallace G. Vectors of plant parasites of the genus Phytomonas (Protozoa, Zoomastigophorea, Kinetoplastida). In: Harris KF, editor. Advances in disease vector research. New York, NY: Springer; 1994. p. 333–359. https://doi.org/10.1007/978-1-4612-2590-4_12

Luise C, Dollet M, Mariau D. Research into hartrot coconut, a disease caused by Phytomonas (Trypanosomatidae), and into its vector Lincus sp. (Pentatomidae) in Guiana. Oléagineux. 1986;41:437–449.

Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10:e1004007. https://doi.org/10.1371/journal.pgen.1004007

Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422. https://doi.org/10.1126/science.1112642

Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–442. https://doi.org/10.1126/science.1112680

El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309:409–415. https://doi.org/10.1126/science.1112631

Jaskowska E, Butler C, Preston G, Kelly S. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog. 2015;11(1):e1004484. https://doi.org/10.1371/journal.ppat.1004484

Jankevicius SI, Almeida ML, Jankevicius JV, Cavazzana M, Attias M, de Souza W. Axenic cultivation of trypanosomatids found in corn (Zea mays) and in phytophagous hemipterans (Leptoglossus zonatus Coreidae) and their experimental transmission. J Euk Microbiol. 1993;40:576–581. https://doi.org/10.1111/j.1550-7408.1993.tb06110.x

Teixeira MMG, Takata CSA, Conchon I, Campaner M, Camargo EP. Ribosomal and kDNA markers distinguish two sub-groups of Herpetomonas among old species and new trypanosomatids isolated from flies. J Parasitol. 1997;83:5845. https://doi.org/10.2307/3284317

Bernard J, Bremond M. Molecular biology of fish viruses: a review. Vet Res. 1995;26:341–351.

Walker PJ, Benmansour A, Calisher CH, Dietzgen R, Fang RX, Jackson AO, et al. Family Rhabdoviridae. In: van Regenmortel MHV, Fauquet CM, Bishop DHL, editors. Virus taxonomy: classification and nomenclature of viruses. Seventh report of the International Committee on Taxonomy of Viruses. Berlin: Springer; 2000. p. 563–583.

Tordo N, Benmansour A, Calisher C, Dietzgen RG, Fang RX, Jackson AO, et al. Rhabdoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, editors. Virus taxonomy. Eigth report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2004. p. 623–644.

Dale JL, Peters D. Protein composition of the virions of five plant rhabdoviruses. Intervirology. 1981;16:86–94. https://doi.org/10.1159/000149252

Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J Virol. 2001;75:8096–8104. https://doi.org/10.1128/JVI.75.17.8096-8104.2001

Wang Y, Cowley JA, Walker PJ. Adelaide River virus nucleoprotein gene: analysis of phylogenetic relationships of ephemeroviruses and other rhabdoviruses. J Gen Virol. 1995;76:995–999. https://doi.org/10.1099/0022-1317-76-4-995

Bourhy H, Cowley JA, Larrous F, Holmes EC, Walker PJ. Phylogenetic relationships among rhabdoviruses inferred using the L polymerase gene. J Gen Virol. 2005;86:2849–2858. https://doi.org/10.1099/vir.0.81128-0

Rothenberg M, Hanson MR. Different transcript abundance of two divergent ATP synthase subunit 9 genes in the mitochondrial genome of Petunia hybrida. Mol Gen Genet. 1987;209:21–27. https://doi.org/10.1007/BF00329831

Pruitt KD, Hanson MR. Cytochrome oxidase subunit II sequences in Petunia mitochondria: two intron-containing genes and an intron-less pseudogene associated with cytoplasmic male sterility. Curr Genet. 1989;16:281–291. https://doi.org/10.1007/BF00422115

Senda M, Harada T, Mikami T, Sugiura M, Kinoshita T. Genomic organization and sequence analysis of the cytochrome oxidase subunit II gene from normal and male-sterile mitochondria in sugar beet. Curr Genet. 1991;19:175–181. https://doi.org/10.1007/BF00336484

Nugent JM, Palmer JD. RNA-mediated transfer of the coxII gene from the mitochondrion to the nucleus during flowering plant evolution. Cell. 1991;66:473–481. https://doi.org/10.1016/0092-8674(81)90011-8

Bonen L, Calixte S. Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins. Mol Biol Evol. 2006;23:701–712. https://doi.org/10.1093/molbev/msj080

Sandoval P, Leon G, Gomez I, Carmona R, Figueroa P, Holuigue L, et al. Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene. 2004;324:139–147. https://doi.org/10.1016/j.gene.2003.09.027

Fallahi M, Crosthwait J, Calixte S, Bonen L. Fate of mitochondrially located S19 ribosomal protein genes after transfer of a functional copy to the nucleus in cereals. Mol Genet Genomics. 2005;273:76–83. https://doi.org/10.1007/s00438-004-1102-9

Sanchez H, Fester T, Kloska S, Schroder W, Schuster W. Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J. 1996;15:2138–2149.

Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30:394–399. https://doi.org/10.1038/ng851

Ayliffe MA, Scott NS, Timmis JN. Analysis of plastid DNA-like sequences within the nuclear genomes of higher plants. Mol Biol Evol. 1998;15:738–745. https://doi.org/10.1093/oxfordjournals.molbev.a025977

Tourmen Y, Baris O, Dessen P, Jacques C, Malthiery Y, Reynier P. Structure and chromosomal distribution of human mitochondrial pseudogenes. Genomics. 2002;80(1):71–77. https://doi.org/10.1006/geno.2002.6798

Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (NUMTS) in sequenced nuclear genomes. PLoS Genet. 2010;6:e1000834. https://doi.org/10.1371/journal.pgen.1000834

Roark LM, Hui AY, Donnelly L, Birchler JA, Newton KJ. Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res. 2010;129:17–23. https://doi.org/10.1159/000312724

Richly E, Leister D. NUPTs in sequenced eukaryotes and their genomic organization in relation to NUMTs. Mol Biol Evol. 2004;21:1972–1980. https://doi.org/10.1093/molbev/msh210

Noutsos C, Richly E, Leister D. Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants. Genome Res. 2005;15:616–628. https://doi.org/10.1101/gr.3788705

Stegemann S, Bock R. Experimental reconstruction of functional gene transfer from tobacco plastid genome to the nucleus. Plant Cell. 2006;18:2869–2878. https://doi.org/10.1105/tpc.106.046466

Michalovova M, Vyskot B, Kejnovsky E. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity. 2013;111:314–320. https://doi.org/10.1038/hdy.2013.51

Martis MM, Klemme S, Banaei-Moghaddam AM, Blattner FK, Macas J, Schmutzer T, et al. Selfish supernumerary chromosome reveals its origin as a mosaic of host genome and organellar sequences. Proc Natl Acad Sci USA. 2012;109:13343–13346. https://doi.org/10.1073/pnas.1204237109

Perna NT, Kocher TD. Mitochondrial DNA: molecular fossils in the nucleus. Curr Biol. 1996;6:128–129. https://doi.org/10.1016/S0960-9822(02)00441-4

Hazkani-Covo E, Sorek R, Graur D. Evolutionary dynamics of large numts in the human genome: rarity of independent insertions and abundance of post-insertion duplications. J Mol Evol. 2003;56:169–174. https://doi.org/10.1007/s00239-002-2390-5

Ricchetti M, Tekaia F, Dujon B. Continued colonization of the human genome by mitochondrial DNA. PLoS Biol. 2004;2:1313–1324. https://doi.org/10.1371/journal.pbio.0020273

Claros MG, Bautista R, Guerrero-Fernández D, Benzerki H, Seoane P, Fernández-Pozo N. Why assembling plant genome sequences is so challenging. Biology. 2012;1(2):439–459. https://doi.org/10.3390/biology1020439

Merchant S, Wood DE, Salzberg SL. Unexpected cross-species contamination in genome sequencing projects. PeerJ. 2014;2:e675. https://doi.org/10.7717/peerj.675

Willerslev E, Mourier T, Hansen AJ, Christensen B, Barnes I, Salzberg SL. Contamination in the draft of the human genome masquerades as lateral gene transfer. DNA Seq. 2002;13(2):75–76. https://doi.org/10.1080/10425170290023392

Ananiev EV, Phillips RL, Rines HW. Complex structure of knob DNA on maize chromosome 9: retrotransposon invasion into heterochromatin. Genetics. 1998;149:2025–2037.

Pelissier T, Tutois S, Tourmente S, Deragon JM, Picard G. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica. 1996;97:141–151. https://doi.org/10.1007/BF00054621

Alkhimova OG, Mazurok NA, Potapova TA, Zakian SM, Heslop-Harrison JS, Vershinin, AV. Diverse patterns of the tandem repeats organization in rye chromosomes. Chromosoma. 2004;113:42–52. https://doi.org/10.1007/s00412-004-0294-4

Panstruga R, Buschges R, Piffanelli P, Schulze-Lefert P. A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Res. 1998;26:1056–1062. https://doi.org/10.1093/nar/26.4.1056

Presting GG, Malysheva L, Fuchs J, Schubert I. A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–728. https://doi.org/10.1046/j.1365-313x.1998.00341.x

Mao L, Devos KM, Zhu I, Gale M. Cloning and genetic mapping of wheat telomere-associated sequences. Mol Genet Genomics. 1997;254:584–591. https://doi.org/10.1007/s004380050455

Tomita M, Shinohara K, Morimoto M. Revolver is a new class of transposon-like gene composing the Triticeae genome. DNA Res. 2008;15:49–62. https://doi.org/10.1093/dnares/dsm029

Grandbastien MA. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 1998;3:181–187. https://doi.org/10.1016/S1360-1385(98)01232-1

Flavell R. Sequence amplification, deletion and rearrangement: major sources of variation during species divergence. In: Dover GA, Flavell R, editors, Genome evolution. London: Academic Press; 1982. p. 301–323.

Dover GA. Molecular drive: a cohesive mode of species evolution. Nature. 1982;299:111–117. https://doi.org/10.1038/299111a0

Dover GA. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet. 1986;2:159–165. https://doi.org/10.1016/0168-9525(86)90211-8

Jakowitsch J, Mette MF, van der Winden J, Matzke MA, Matzke AJM. Integrated pararetroviral sequences define a uniqueclass of dispersed repetitive DNA in plants. Proc Natl Acad Sci USA. 1999;96(23):13241–13246. https://doi.org/10.1073/pnas.96.23.13241

John B, Miklos G. The eukaryote genome in development and evolution. London: Allen and Unwinl; 1988.

Dover GA, Tautz D. Conservation and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond B Biol Sci. 1986;312:275–289. https://doi.org/10.1098/rstb.1986.0007




DOI: https://doi.org/10.5586/asbp.3548

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society