Arum-type of arbuscular mycorrhizae, dark septate endophytes and Olpidium spp. in fine roots of container-grown seedlings of Sorbus torminalis (Rosaceae)

Roman M. Bzdyk, Josef Kohler, Jacek Olchowik, Marta Aleksandrowicz-Trzcińska, Thomas Kirisits

Abstract


The aim of this study was to determine the mycorrhizal status of nursery seedlings of the wild service tree (Sorbus torminalis), which belongs to the Rosaceae family. Its mycorrhizal associations are still fragmentarily known, and data from the few existing studies indicate that it forms ectomycorrhizal symbiosis (ECM). We analyzed the degree of mycorrhizal colonization of thirty 2-year-old container-grown S. torminalis nursery seedlings, which belonged to three single-tree progenies. The roots were dominated by arbuscular mycorrhizae (AM), with the morphology of the Arum-type containing arbuscules, vesicles and hyphae; however, no ECM structures were found. The degree of root colonization of the analyzed seedlings by AM fungi was 83.6% and did not differ significantly between the three single-tree progenies. In addition to AM, structures of dark septate endophytes (0.7%) and sporangia of Olpidium spp. (1.1%) were found in wild service tree roots. In agreement with previous studies, we confirmed arbuscular mycorrhizae for S. torminalis. Moreover, this is the first report that roots of this Sorbus species show the Arum-type morphology of AM and are associated with Olpidium species.

Keywords


wild service tree; arbuscular mycorrhizal fungi (AMF); mycorrhizal status; morphological types; root endobionts; symbiosis

Full Text:

PDF

References


Nicolescu VN, Hochbichler E, Coello J, Ravagni S, Giulietti V. Ecology and silviculture of wild service tree [Sorbus torminalis (L.) Crantz]: a literature review. Die Bodenkultur. 2009;60:33–42.

Demesure B, Le Guerroue B, Lucchi G, Prat D, Petit RJ. Genetic variability of a scattered temperate forest tree: Sorbus torminalis L (Crantz). Ann For Sci. 2000;57:63–71. http://dx.doi.org/10.1051/forest:2000101

Demesure-Musch B, Oddou-Muratorio S. EUFORGEN technical guidelines for genetic conservation and use for wild service tree (Sorbus torminalis). Rome: International Plant Genetic Resources Institute; 2004.

Kirisits T. Die Elsbeere – Baum des Jahres 2012. Kärntner Forstverein Information. 2012;69:20–23.

Gsenger A. Die Elsbeere (Sorbus torminalis) im Wiesenwienerwald [Master thesis]. Vienna: University of Natural Resources and Life Sciences, Vienna (BOKU); 2013.

Rasmussen KK, Kollmann J. Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis. Acta Oecol (Montrouge). 2004;25:211–218. http://dx.doi.org/10.1016/j.actao.2004.02.001

Skovsgaard JP, Graversgaard HC. Skovdyrkning for fremtiden: Tarmvridrøn. Skoven. 2011;43(8):346–348.

Bednorz L. The wild service tree Sorbus torminalis (L.) Crantz in plant communities of Poland. Dendrobiology. 2007;57:49–54.

Bednorz L. Conservation of genetic resources of Sorbus torminalis in Poland. Dendrobiology. 2007;58:3–7.

Nawrocka-Grześkowiak U, Frydel K. Jarząb brekinia (Sorbus torminalis) na terenie Nadleśnictwa Kaliska. Zarządzanie Ochroną Przyrody w Lasach. 2010(4):105–110.

Kozioł C, Matras J. The country report on forest genetic resources – Poland. Warsaw: The State Forests Information Centre; 2013.

Kirisits T, Wegensteiner R. Elsbeer-Schädlinge. In: Mayer N, Klumpp RT, editors. Elsbeere in Österreich – Monographie. Michelbach: Verein zur Erhaltung, Pflege und Vermarktung der Elsbeere-Genussregion Wiesenwienerwald Elsbeere; 2013. p.127–150.

Brundrett M, Bougher N, Dell B, Grave T, Malajczuk N. Working with mycorrizha in forestry and agriculture. Canberra: Australian Centre for International Agriculture Research (ACIAR); 1996.

Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363. http://dx.doi.org/10.1007/s00572-005-0033-6

Blaschke M, Bußler H. Pilze und Insekten an der Elsbeere. LWF Wissen. 2011;67:22–23.

Harley JL, Harley EL. A checklist of mycorrhiza in the British flora. New Phytol. 1987;105:1–102. http://dx.doi.org/10.1111/j.1469-8137.1987.tb00674.x

Akhmetzhanova AA, Soudzilovskaia NA, Onipchenko VG, Cornwell WK, Agafonov VA, Selivanov IA, et al. A rediscovered treasure: mycorrhizal intensity database for 3000 vascular plant species across the former Soviet Union. Ecology. 2012;93:689. http://dx.doi.org/10.1890/11-1749.1

Azcón-Aguilar C, Palenzuela J, Ferrol N, Oehl F, Barea JM. Mycorrhizal status and arbuscular mycorrizal fungal diversity of endangered plant species in the Sierra Nevada National Park. In: Hafidi M, Duponnois R, editors. The mycorrhizal symbiosis in Mediterranean environment: importance in ecosystem stability and in soil rehabilitation strategies. Hauppauge: Nova Science Publishers; 2012. p. 49–70.

Moradi M, Shirvany A, Matinizadeh M, Etemad V, Naji HR, Abdul-Hamid H, et al. Arbuscular mycorrhizal fungal symbiosis with Sorbus torminalis does not vary with soil nutrients and enzyme activities across different sites. iForest. 2014;8:308–313. http://dx.doi.org/10.3832/ifor1236-008

Hempel S, Götzenberger L, Kühn I, Michalski SG, Rillig MC, Zobel M, et al. Mycorrhizas in the Central European flora – relationships with plant life history traits and ecology. Ecology. 2013;94:1389–1399. http://dx.doi.org/10.1890/12-1700.1

Jumpponen A. Dark septate endophytes – are they mycorrhizal? Mycorrhiza. 2001;11:207–211. http://dx.doi.org/10.1007/s005720100112

Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. Amsterdam: Academic Press; 2008.

Webster J, Weber RWS. Introduction to fungi. 3rd ed. Cambridge: University Press; 2007. http://dx.doi.org/10.1017/CBO9780511809026

Vierheilig H, Coughlan A, Wyss U, Piché Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol. 1998;64:5004–5007.

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. http://dx.doi.org/10.1111/j.1469-8137.1990.tb00476.x

Dickson S. The Arum–Paris continuum of mycorrhizal symbioses. New Phytol. 2004;163:187–200. http://dx.doi.org/10.1111/j.1469-8137.2004.01095.x

Agrios GN. Plant pathology. 5th ed. London: Academic Press; 2005.

Brundrett M, Abbott LK. Roots of jarrah forest plants. Mycorrhizal associations of shrubs and herbaceous plants. Aust J Bot. 1991;39:445–457. http://dx.doi.org/10.1071/BT9910445

Brundrett M, Murase G, Kendrick B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can J Bot. 1990;68:551–578. http://dx.doi.org/10.1139/b90-076

Cazares E, Trappe JM. Vesicular endophytes in roots of the Pinaceae. Mycorrhiza. 1993;1:153–156. http://dx.doi.org/10.1007/BF00210584

Truszkowska W. Mykotrofizm olesów Białowieskiego Parku Narodowego i Domaszyna pod Wrocławiem. Acta Soc Bot Pol. 1953;22:737–752.

Morrison SJ, Nichol PA, Hicklenton PR. VA mycorrhizal inoculation of landscape trees and shrubs growing under high fertility conditions. J Environ Hortic. 1993;11:64–71.

Vosatka M. VA Mycorrhiza in stands of two hardwood species on sites disturbed by SO2 emissions and on strip-mine spoil banks in Northern Bohemia. Developments in Soil Science. 1989;18:149–156. http://dx.doi.org/10.1016/S0166-2481(08)70209-5

Otto G, Winkler H. Colonization of rootlets of some species of Rosaceae by actinomycetes, endotrophic mycorrhiza, and endophytic nematodes in a soil conductive to specific cherry replant disease. Z Pflanzenkr Pflanzenschutz. 1995;102:63–68.

Aboul-Nasr A. Effects of inoculation with Glomus intraradices on growth, nutrient uptake and metabolic activities of squash plants under drought stress conditions. Ann Agric Sci. 1998;1:119–133.

Motosugi H, Yamamoto Y, Naruo T, Kitabyashi H, Ishi T. Comparison of the growth and leaf mineral concentrations between three grapevine rootstocks and their corresponding tetraploids inoculated with an arbuscular mycorrhizal fungus Gigaspora margarita. Vitis. 2002;41:21–25.

Smith SE, Jakobsen I, Grønlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–1057. http://dx.doi.org/10.1104/pp.111.174581

Alexander I, Ahmad N, See LS. The role of mycorrhizas in the regeneration of some Malaysian forest trees. Philos Trans R Soc Lond B Biol Sci. 1992;335:379–388. http://dx.doi.org/10.1098/rstb.1992.0029

Onguene NA, Kuyper TW. Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza. 2002;12:13–17. http://dx.doi.org/10.1007/s00572-001-0140-y

Richter DL, Bruhn JN. Mycorrhizal fungus colonization of Pinus resinosa Ait. transplanted on northern hardwood clearcuts. Soil Biol Biochem. 1993;25:355–369. http://dx.doi.org/10.1016/0038-0717(93)90135-X

Bradbury SM, Danielson RM, Visser S. Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Can J Bot. 1998;76:218–227.

Kovacs G. Elektrophoretische Enzymmuster von Fruchtkörpern Höherer Pilze [PhD thesis]. Vienna: University of Vienna; 1991.

Datenbank der Pilze Österreichs [Internet]. 2009 [cited 2015 Feb 24]. Available from: http://www.austria.mykodata.net

Harley JL, Smith SE. Mycorrhizal symbiosis. Toronto: Academic Press; 1983.

Ahlich K, Sieber TN. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol. 1996;132:259–270. http://dx.doi.org/10.1111/j.1469-8137.1996.tb01845.x

Halmschlager E, Kowalski T. The mycobiota in nonmycorrhizal roots of healthy and declining oaks. Can J Bot. 2004;82:1446–1458. http://dx.doi.org/10.1139/b04-101

Wilcox HE, Wang CJK. Ectomycorrhizal and ectendomycorrhizal associations of Phialophora finlandia with Pinus resinosa, Picea rubens, and Betula alleghaensis. Can J For Res. 1987;17:976–990. http://dx.doi.org/10.1139/x87-152

Newsham KK. A meta-analysis of plant responses to dark septate root endophytes. New Phytol. 2011;190:783–793. http://dx.doi.org/10.1111/j.1469-8137.2010.03611.x

Zubek S, Nobis M, Błaszkowski J, Mleczko P, Nowak A. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia. Symbiosis. 2011;54:139–149. http://dx.doi.org/10.1007/s13199-011-0137-z

Weber RWS, Webster WJ. Teaching techniques for mycology. Olpidium and Rhizophlyctis (Chytridiomycetes). Mycologist. 2000;14:17–20. http://dx.doi.org/10.1016/S0269-915X(00)80056-7

Palle SR, Miao H, Seyran M, Louzada ES, Da Graca JV, Skaria M. Evidence for association of Citrus psorosis virus with symptomatic trees and an Olpidium-like fungus in Texas. In: Proceedings of the 16th Conference of the International Organization of Citrus Virologists; 2004; Monterrey, Mexico. Riverside, CA: International Organization of Citrus Virologists; 2005. p. 423–426.

Campbell RN, Sim ST. Host specificity and nomenclature of Olpidium bornovanus (= Olpidium radicale) and comparisons to Olpidium brassicae. Can J Bot. 1994;72:1136–1143. http://dx.doi.org/10.1139/b94-139

Gupta VK, Paul YS. Diseases of field crops. New Delhi: Indus Publishing Company; 2002.

Verchot-Lubicz J. Soilborne viruses: advances in virus movement, virus induced gene silencing, and engineered resistance. Physiol Mol Plant Pathol. 2002;62:55–63. http://dx.doi.org/10.1016/S0885-5765(03)00040-7

Urcelay C, Acho J, Joffre R. Fungal root symbionts and their relationship with fine root proportion in native plants from the Bolivian Andean highlands above 3700 m elevation. Mycorrhiza. 2011;21:323–330. http://dx.doi.org/10.1007/s00572-010-0339-x