EGTA, a calcium chelator, affects cell cycle and increases DNA methylation in root tips of Triticum aestivum L.

Caiyun Zhang, Wenshuo Shi, Keshi Ma, Hongjie Li, Feixiong Zhang

Abstract


In this study, when germinated Triticum aestivum L. seeds were treated with 0, 2, 4 and 6 mM ethyl glycol tetraacetic acid (EGTA), root growth was suppressed and the mitotic index decreased. These inhibitory effects were positively correlated with EGTA concentration. RT-PCR analysis revealed that the expression of several gene markers related to the G1/S transition of the cell cycle were significantly downregulated. Confocal microscopy of Fluo-3/AM-stained roots showed chelation of nearly all of the Ca2+ within the root meristematic regions. Both random amplified polymorphic DNA (RAPD) and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques showed significant increases in the levels of genomic DNA polymorphisms and degree of DNA methylation. The study provides information concerning the impact of Ca2+ chelator, EGTA, on the growth, expression of cell cycle transition marker genes, and changes in DNA structure and methylation in the wheat roots.

Keywords


Ca2+ deprivation; EGTA; genomic DNA damage; DNA methylation; RAPD; CRED-RA; Triticum aestivum L.

Full Text:

PDF

References


Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–1677. http://dx.doi.org/10.1126/science.274.5293.1672

Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23:345–356. http://dx.doi.org/10.1016/j.tcb.2013.03.002

Pena LB, Barcia RA, Azpilicueta CE, Méndez AAE, Gallego SM. Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings. Plant Sci. 2012;196:1–7. http://dx.doi.org/10.1016/j.plantsci.2012.07.008

Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–330. http://dx.doi.org/10.1016/0092-8674(95)90385-2

Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–5227. http://dx.doi.org/10.1038/sj.onc.1209615

Iyer NG, Xian J, Chin SF, Bannister AJ, Daigo Y, Aparicio S, et al. p300 is required for orderly G1/S transition in human cancer cells. Oncogene. 2007;26:21–29. http://dx.doi.org/10.1038/sj.onc.1209771

Bell SD, Botchan MR. The minichromosome maintenance replicative helicase. Cold Spring Harb Perspect Biol. 2013;5:a012807. http://dx.doi.org/10.1101/cshperspect.a012807

Todorov IT, Attaran A, Kearsey SE. BM28, a human member of the Mcm2-3–5 family, is displaced from chromatin during DNA replication. J Cell Biol. 1995;129:1433–1445. http://dx.doi.org/10.1083/jcb.129.6.1433

Dimitrova DS, Todorov IT, Melendy T, Gilbert DM. Mcm2, but not Rpa, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol. 1999;146:709–722. http://dx.doi.org/10.1083/jcb.146.4.709

Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot. 2011;107:1127–1140. http://dx.doi.org/10.1093/aob/mcq243

Reichard P. Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem. 1988;57:349–374. http://dx.doi.org/10.1146/annurev.bi.57.070188.002025

Herrick J, Sclavi B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol. 2007;63:22–34. http://dx.doi.org/10.1111/j.1365-2958.2006.05493.x

Hepler PK. Calcium: a central regulator of plant growth and development. Plant Cell. 2005;17:2142–2155. http://dx.doi.org/10.1105/tpc.105.032508

Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants. Mol Plant. 2010;3:653–669. http://dx.doi.org/10.1093/mp/ssq019

Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H. Plant mechanosensing and Ca2+ transport. Trends Plant Sci. 2013;18:227–233. http://dx.doi.org/10.1016/j.tplants.2012.12.002

Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996;6:427–437. http://dx.doi.org/10.1016/S0960-9822(02)00510-9

Simon EW. The symptoms of calcium deficiency in plants. New Phytol. 1978;80:1–15. http://dx.doi.org/10.1111/j.1469-8137.1978.tb02259.x

Chao L, Bofu P, Weiqian C, Yun L, Hao H, Liang C, et al. Influences of calcium deficiency and cerium on growth of spinach plants. Biol Trace Elem Res. 2008;121:266–275. http://dx.doi.org/10.1007/s12011-007-8054-y

Legocka J, Sobieszczuk-Nowicka E. Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPII accumulation during greening in barley leaves and cucumber cotyledons. Acta Biol Crac Ser Bot. 2014;56:27–34. http://dx.doi.org/10.2478/abcsb-2014-0017

Chuang EY, Lin KJ, Su FY, Chen HL, Maiti B, Ho YC, et al. Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release. 2013;169:296–305. http://dx.doi.org/10.1016/j.jconrel.2012.11.011

Ni XL, Zhang FX. PI3K is involved in nucleolar structure and function on root-tip meristematic cells of Triticum aestivum L. Acta Histochem. 2014;116:838–843. http://dx.doi.org/10.1016/j.acthis.2014.02.004

Li SP, Xie WL, Cai HH, Cai JY, Yang PH. Hydroxyl radical scavenging mechanism of human erythrocytes by quercetin–germanium (IV) complex. Eur J Pharm Sci. 2012;47:28–34. http://dx.doi.org/10.1016/j.ejps.2012.04.019

Wang M, Ruan Y, Chen Q, Li S, Wang Q, Cai J. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2+ concentration. Eur J Pharm Sci. 2011;650:41–47. http://dx.doi.org/10.1016/j.ejphar.2010.09.049

Fadoul HE, El Siddig MA, El Hussein AA. Assessment of genetic diversity among Sudanese wheat cultivars using RAPD markers. International Journal of Current Science. 2013;6:51–57.

Azimi A, Shahriari F, Fotovat A, Qale RK, Agje KH. Investigation of DNA changes in wheat (Triticum aestivum L.) induced by cadmium using random amplified polymorphic DNA (RAPD) analysis. Afr J Biotechnol. 2013;12:1921–1929. http://dx.doi.org/10.5897/AJB12.2836

Ahmed MF, Iqbal M, Masood MS, Rabbani MA, Munir M. Assessment of genetic diversity among Pakistani wheat (Triticum aestivum L.) advanced breeding lines using RAPD and SDS-PAGE. Electronic Journal of Biotechnology. 2010;13:1–2. http://dx.doi.org/10.2225/vol13-issue3-fulltext-2

Liu ZQ, Pei Y, Pu ZJ. Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat Triticum aestivum L. Plant Breed. 1999;118:119–123. http://dx.doi.org/10.1046/j.1439-0523.1999.118002119.x

Demirkiran A, Marakli S, Temel A, Gozukirmizi N. Genetic and epigenetic effects of salinity on in vitro growth of barley. Genet Mol Biol. 2013;36:566–570. http://dx.doi.org/10.1590/S1415-47572013000400016

Ercan FS. Use of random amplified polymorphic DNA (RAPD) to detect DNA damage induced by Prangos ferulacea (Umbelliferae) essential oil against the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Arch Biol Sci. 2015;67:235–239. http://dx.doi.org/10.2298/ABS140903029E

Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, et al. Analysis of DNA methylation in various swine tissue. PLoS One. 2011;6:e16229. http://dx.doi.org/10.1371/journal.pone.0016229

Sáez-Laguna E, Guevara MÁ, Díaz LM, Sánchez-Gómez D, Collada C, Aranda I, et al. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L. PLoS One. 2014;9:e103145. http://dx.doi.org/10.1371/journal.pone.0103145

Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 2004;166:169–178. http://dx.doi.org/10.1016/j.plantsci.2003.09.004

Lu Y, Rong T, Cao M. Analysis of DNA methylation in different maize tissues. J Genet Genomics. 2008;35:41–48. http://dx.doi.org/10.1016/S1673-8527(08)60006-5

de Veylder L, Beeckman T, Inzé D. The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol. 2007;8:655–665. http://dx.doi.org/10.1038/nrm2227

Boynton AL, Whitfield JF. Stimulation of DNA synthesis in calcium-deprived T51B liver cells by the tumor promoters phenobarbital, saccharin, and 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1980;40:4541–4545.

Whitfield JF, Boynton AL, MacManus JP, Sikorska M, Tsang BK. The regulation of cell proliferation by calcium and cyclic AMP. Mol Cell Biochem. 1979;27:155–179. http://dx.doi.org/10.1007/BF00215364

Cheetham BF. An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation. Mol Cell Biol. 1983;3:480–483. http://dx.doi.org/10.1128/MCB.3.3.480

Tani D, Monteilh-Zoller MK, Fleig A, Penner R. Cell cycle-dependent regulation of store-operated ICRAC and Mg2+-nucleotide-regulated MagNuM (TRPM7) currents. Cell Calcium. 2007;41:249–260. http://dx.doi.org/10.1016/j.ceca.2006.07.004

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–6535. http://dx.doi.org/10.1093/nar/18.22.6531

Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–7218. http://dx.doi.org/10.1093/nar/18.24.7213

Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo[α] pyrene. Environ Toxicol Chem. 1999;18:2275–2282. http://dx.doi.org/10.1002/etc.5620181023

Cifci EA, Yagdi K. Study of genetic diversity in wheat (Triticum aestivum) varieties using random amplified polymorphic DNA (RAPD) analysis. Turkish Journal of Field Crops. 2012;17:91–95.

Freitas LB, Jerusalinsky L, Bonatto SL, Salzano FM. Extreme homogeneity among Brazilian wheat genotypes determined by RAPD markers. Pesqui Agropecu Bras. 2000;35;2255–2260. http://dx.doi.org/10.1590/S0100-204X2000001100018

Spielmeyer W, Sharp PJ, Lagudah ES. Identification and validation of markers linked to broad-spectrum stem rust resistance gene in wheat (Triticum aestivum L.). Crop Sci. 2003;43:333–336. http://dx.doi.org/10.2135/cropsci2003.3330

Bai G, Guo P, Kolb FL. Genetic relationships among head blight resistant cultivars of wheat assessed on the basis of molecular markers. Crop Sci. 2003;43;498–507. http://dx.doi.org/10.2135/cropsci2003.4980

Rahman M, Zafar Y. Genotyping of a new strain of lentil (Lens culinaris Medik.) by DNA fingerprinting. Pak J Bot. 2001;33:423–428.

Liu S, Anderson JA. Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci. 2003;43:760–766. http://dx.doi.org/10.2135/cropsci2003.7600

Zhou L, Li J, Lin X, Al-Rasheid KAS. Use of RAPD to detect DNA damage induced by nitrofurazone in marine ciliate, Euplotes vannus (Protozoa, Ciliophora). Aquat Toxicol. 2011;103:225–232. http://dx.doi.org/10.1016/j.aquatox.2011.03.002

Cai Q, Guy CL, Moore GA. Detection of cytosine methylation and mapping of a gene influencing cytosine methylation in the genome of Citrus. Genome. 1996;39:235–242. http://dx.doi.org/10.1139/g96-032

Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS. DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica. 2005;50:19–23.

Sano T, Higaki T, Handa K, Kadota Y, Kuchitsu K, Hasezawa S, et al. Calcium ions are involved in the delay of plant cell cycle progression by abiotic stresses. FEBS Lett. 2006;580:597–602. http://dx.doi.org/10.1016/j.febslet.2005.12.074

Atienzar FA, Cheung VV, Jha AN, Depledge MH. Fitness parameters and DNA effects are sensitive indicators of copper-induced toxicity in Daphnia magna. Toxicol Sci. 2001;59:241–250. http://dx.doi.org/10.1093/toxsci/59.2.241

Atienzar FA, Venier P, Jha AN, Depledge MH. Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutation Research / Genetic Toxicology and Environmental Mutagenesis. 2002;521:151–163. http://dx.doi.org/10.1016/S1383-5718(02)00216-4

Atienzar FA, Billinghurst Z, Depledge MH. 4-n-Nonylphenol and 17-β estradiol may induce common DNA effects in developing barnacle larvae. Environ Pollut. 2002;120:735–738. http://dx.doi.org/10.1016/S0269-7491(02)00184-7

Atienzar FA, Jha AN. The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research / Reviews in Mutation Research. 2006;613:76–102. http://dx.doi.org/10.1016/j.mrrev.2006.06.001




DOI: https://doi.org/10.5586/asbp.3502

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society