Modeling the potential distribution of three lichens of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Central Europe

Katarzyna Szczepańska, Daniel Pruchniewicz, Maria Kossowska

Abstract


The paper presents models of potential geographical distribution of Xanthoparmelia delisei, X. loxodes, and X. verruculifera in Central Europe. The models were developed with MaxEnt (maximum entropy algorithm) based on 224 collection localities and bioclimatic variables. The applied method enabled to identify the areas where climatic conditions are the most suitable for modeled species outside their known localities. According to obtained model, high potential distribution of the X. delisei and X. loxodes was found in the northern and northeastern Poland, when areas most suitable for X. verruculifera were placed in the south, especially in the Carpathians. Model also suggests that potential distribution of X. delisei could be wider than known data on its occurrence and extend to Lithuania, Belarus and the Czech Republic. MaxEnt modeling of X. loxodes showed the widest potential distribution for this species in Central Europe with the best regions in Lithuania. Potential distribution in all models was strongly influenced by precipitation-related variables. All the modelled species prefer areas where precipitation in the coldest quarter is very low.

Keywords


niche modeling; MaxEnt, biogeography; parmelioid lichens; Xanthoparmelia delisei; X. loxodes; X. verruculifera

Full Text:

PDF

References


Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT. A new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales) based on morphological and molecular evidence. Taxon. 2004;53:959–975. http://dx.doi.org/10.2307/4135563

Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, et al. Testing morphology based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol. 2007;44:812–824. http://dx.doi.org/10.1016/j.ympev.2006.11.029

Galloway DJ. Lichen biogeography. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 315–335. http://dx.doi.org/10.1017/CBO9780511790478.017

Blanco O, Crespo A, Ree RH, Lumbsch HT. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol. 2006;39:52–69. http://dx.doi.org/10.1016/j.ympev.2005.12.015

de Paz GA, Cubas P, Crespo A, Elix JA, Lumbsch HT. Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE. 2012;7(6):e39683. http://dx.doi.org/10.1371/journal.pone.0039683

Szczepańska K, Kossowska M. The lichen-forming fungi of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Poland. Acta Soc Bot Pol. 2014;83:59–65. http://dx.doi.org/10.5586/asbp.2014.004

Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8:993–1009. http://dx.doi.org/10.1111/j.1461-0248.2005.00792.x

Mbatudde M, Mwanjololo M, Kakudidi EK, Dalitz H. Modelling the potential distribution of endangered Prunus africana (Hook.f.) Kalkm. in East Africa. Afr J Ecol. 2012;50:393–403. http://dx.doi.org/10.1111/j.1365-2028.2012.01327.x

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips SJ, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161–175. http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x

Parolo G, Rossi G, Ferrarini A. Toward improved species niche modelling: Arnica montana in the Alps as a case study. J Appl Ecol. 2008;45:1410–1418. http://dx.doi.org/10.1111/j.1365-2664.2008.01516.x

Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17:43–57. http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x

Syfert MM, Smith MJ, Coomes DA. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE. 2013;8(2):e55158. http://dx.doi.org/10.1371/journal.pone.0055158

Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. London: British Lichen Society; 2001.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surface for global land areas. Int J Climatol. 2005;25:1965–2198. http://dx.doi.org/10.1002/joc.1276

Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611. http://dx.doi.org/10.1111/j.1600-0587.2009.06142.x

Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng. 2013;51:83–87. http://dx.doi.org/10.1016/j.ecoleng.2012.12.004

Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293. http://dx.doi.org/10.1126/science.3287615

Manel S, Ceri Williams H, Ormerod SJ. Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol. 2001;38:921–931. http://dx.doi.org/10.1046/j.1365-2664.2001.00647.x

Galletti CS, Ridder E, Falconer SE, Fall PL. Maxent modeling of ancient and modern agricultural terraces in the Troodos foothills, Cyprus. Appl Geogr. 2013;39:46–56. http://dx.doi.org/10.1016/j.apgeog.2012.11.020

Hawksworth DL, Blanco O, Divakar PK, Ahti T, Crespo A. A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist. 2008;40:1–21. http://dx.doi.org/10.1017/S0024282908007329

Hawksworth DL, Divakar PK, Crespo A, Ahti T. The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. Lichenologist. 2011;43:639–645. http://dx.doi.org/10.1017/S0024282911000454

Wirth V, Hauck M, Schultz M. Die Flechten Deutschlands. Stuttgart: Eugen Ulmer; 2013.

Rizzi G, Giordani P. The ecology of the lichen genus Xanthoparmelia in Italy: an investigation throughout spatial scales. Plant Biosyst. 2013;147:33–39. http://dx.doi.org/10.1080/11263504.2012.717546

Starkel L. Geografia Polski, środowisko przyrodnicze. Warszawa: Wydawnictwo Naukowe PWN; 1999.

Coppins BJ, Seed L, Earland-Bennett PM. Neofuscelia luteonotata, new to the British Isles, and notes to the N. pulla group. Br Lichen Soc Bull. 2002;90:29–33.

Motiejūnaitė J. Lapiškosios ir krūmiškosios kerpės. Vilnius: Valstiečių Laikraštis; 2002. [Lietuvos grybai; vol 13(1)].

Cieśliński S, Czyżewska K, Fabiszewski J. Red list of the lichens in Poland, In: Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z, editors. Red list of plants and fungi in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2006. p. 71–79.

Green TGA, Nash III TH, Lange OL. Physiological ecology of carbon dioxide exchange. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 152–181. http://dx.doi.org/10.1017/CBO9780511790478.010

Nash III TH. Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 216–233. http://dx.doi.org/10.1017/CBO9780511790478.012

Palmqvist K, Dahlman L, Jonsson A, Nash III TH. The carbon economy of lichens. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 182–215. http://dx.doi.org/10.1017/CBO9780511790478.011

Beckett RP, Kranner I, Minibayeva FV. Stress physiology and the symbiosis. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 134–151. http://dx.doi.org/10.1017/CBO9780511790478.009

Newbold T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr. 2010;34:3–22. http://dx.doi.org/10.1177/0309133309355630

Wolan AK, Vegar Bakkestuen V, Kauserud H, Gulden G, Halvorsen R. Modelling and predicting fungal distribution patterns using herbarium data. J Biogeogr. 2008;35:2298–2310. http://dx.doi.org/10.1111/j.1365-2699.2008.01965.x

Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773–785. http://dx.doi.org/10.1111/j.0906-7590.2006.04700.x

Chatfield C. Model uncertainty, data mining and statistical inference J R Stat Soc Ser A Stat Soc. 1995;158:419–466. http://dx.doi.org/10.2307/2983440

Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr. 2008;35:105–116.

Sérgio C, Figueira R, Draper D, Menezes R, Sousa A.J. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conserv. 2007;135:341–351. http://dx.doi.org/10.1016/j.biocon.2006.10.018

Kruijer HJD, Raes N, Stech M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nova Hedwigia. 2010;91:399–420. http://dx.doi.org/10.1127/0029-5035/2010/0091-0399

Delgadillo C, Villaseñor JL, Ortiz E. The potential distribution of Grimmia (Grimmiaceae) in Mexico. Bryologist. 2012;115:12–22. http://dx.doi.org/10.1639/0007-2745-115.1.12

Yu J, Ma YH, Guo SL. Modeling the geographic distribution of the epiphytic moss Macromitrium japonicum in China. Ann Bot Fenn. 2013;50:35–42. http://dx.doi.org/10.5735/085.050.0105

Braidwood D, Ellis CJ. Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany. 2012;90:1316–1325. http://dx.doi.org/10.1139/b2012-103

Carlsen T, Bendiksby M, Hofton TH, Reiso S, Bakkestuen V, Haugan R, et al. Species delimitation, bioclimatic range, and conservation status of the threatened lichen Fuscopannaria confuse. Lichenologist. 2012;44:565–575. http://dx.doi.org/10.1017/S0024282912000199

Ellis CJ, Eaton S, Thedoropoulos M, Coppins BJ, Seaward MRD, Simkin J. Lichen epiphyte scenarios – a toolkit of climate and woodland change for the 21st century. Edinburgh: Royal Botanic Garden and The British Lichen Society; 2014.




DOI: https://doi.org/10.5586/asbp.2015.035

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society