Evolution of the cell wall components during terrestrialization

Alicja Banasiak

Abstract


Colonization of terrestrial ecosystems by the first land plants, and their subsequent expansion and diversification, were crucial for the life on the Earth. However, our understanding of these processes is still relatively poor. Recent intensification of studies on various plant organisms have identified the plant cell walls are those structures, which played a key role in adaptive processes during the evolution of land plants. Cell wall as a structure protecting protoplasts and showing a high structural plasticity was one of the primary subjects to changes, giving plants the new properties and capabilities, which undoubtedly contributed to the evolutionary success of land plants.

In this paper, the current state of knowledge about some main components of the cell walls (cellulose, hemicelluloses, pectins and lignins) and their evolutionary alterations, as preadaptive features for the land colonization and the plant taxa diversification, is summarized. Some aspects related to the biosynthesis and modification of the cell wall components, with particular emphasis on the mechanism of transglycosylation, are also discussed. In addition, new surprising discoveries related to the composition of various cell walls, which change how we perceive their evolution, are presented, such as the presence of lignin in red algae or MLG (1→3),(1→4)-β-D-glucan in horsetails. Currently, several new and promising projects, regarding the cell wall, have started, deciphering its structure, composition and metabolism in the evolutionary context. That additional information will allow us to better understand the processes leading to the terrestrialization and the evolution of extant land plants.


Keywords


cell wall; evolution; land plants; terrestrialization; ancestral genes; polysaccharide; lignin

Full Text:

PDF

References


Becker B, Marin B. Streptophyte algae and the origin of embryophytes. Ann Bot. 2009;103(7):999–1004. http://dx.doi.org/10.1093/aob/mcp044

Sørensen I, Pettolino FA, Bacic A, Ralph J, Lu F, O’Neill MA, et al. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J. 2011;68(2):201–211. http://dx.doi.org/10.1111/j.1365-313X.2011.04686.x

Rubinstein CV, Gerrienne P, de la Puente GS, Astini RA, Steemans P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 2010;188(2):365–369. http://dx.doi.org/10.1111/j.1469-8137.2010.03433.x

Sanderson MJ, Thorne JL, Wikstrom N, Bremer K. Molecular evidence on plant divergence times. Am J Bot. 2004;91(10):1656–1665. http://dx.doi.org/10.3732/ajb.91.10.1656

Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, et al. Origin of land plants: do conjugating green algae hold the key? BMC Evol Biol. 2011;11(1):104. http://dx.doi.org/10.1186/1471-2148-11-104

Karol KG, McCourt RM, Cimino MT, Delwiche CF. The closest living relatives of land plants. Science. 2001;294(5550):2351–2353. http://dx.doi.org/10.1126/science.1065156

McCourt RM, Delwiche CF, Karol KG. Charophyte algae and land plant origins. Trends Ecol Evol. 2004;19(12):661–666. http://dx.doi.org/10.1016/j.tree.2004.09.013

Kenrick P, Crane PR. The origin and early evolution of plants on land. Nature. 1997;389(6646):33–39. http://dx.doi.org/10.1038/37918

Niklas KJ, Kutschera U. The evolution of the land plant life cycle. New Phytol. 2010;185(1):27–41. http://dx.doi.org/10.1111/j.1469-8137.2009.03054.x

Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WGT. The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci. 2012;3:82. http://dx.doi.org/10.3389/fpls.2012.00082

Sørensen I, Domozych D, Willats WGT. How have plant cell walls evolved? Plant Physiol. 2010;153(2):366–372. http://dx.doi.org/10.1104/pp.110.154427

Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol. 2011;62(1):567–590. http://dx.doi.org/10.1146/annurev-arplant-042110-103809

Bacic A, Harris PJ, Stone BA. Structure and function of plant cell walls. In: Preiss J, editor. The biochemistry of plants. New York, NY: Academic Press; 1988. p. 297–371. (vol 14).

O’Neill M, Albersheim P, Darvill A. The pectic polysaccharides of primary cell wall. In: Dey PM, editor. Methods in plant biochemistry. London: Academic Press; 1990. p. 415–441. (vol 2).

Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993;3(1):1–30. http://dx.doi.org/10.1111/j.1365-313X.1993.tb00007.x

Ridley BL, O’Neill MA, Mohnen D. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry. 2001;57(6):929–967. http://dx.doi.org/10.1016/S0031-9422(01)00113-3

Niklas KJ. The cell walls that bind the tree of life. Bioscience. 2004;54(9):831–841. http://dx.doi.org/10.1641/0006-3568(2004)054[0831:TCWTBT]2.0.CO;2

Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52(5):399–451. http://dx.doi.org/10.1111/j.1550-7408.2005.00053.x

Bhattacharya D, Yoon HS, Hackett JD. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays. 2004;26(1):50–60. http://dx.doi.org/10.1002/bies.10376

Palmer JD, Soltis DE, Chase MW. The plant tree of life: an overview and some points of view. Am J Bot. 2004;91(10):1437–1445. http://dx.doi.org/10.3732/ajb.91.10.1437

Baldauf SL. An overview of the phylogeny and diversity of eukaryotes. J Syst Evol. 2008;46(3):263–273.

Popper ZA, Tuohy MG. Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol. 2010;153(2):373–383. http://dx.doi.org/10.1104/pp.110.158055

Baldan B, Andolfo P, Navazio L, Tolomio C, Mariani P. Cellulose in algal cell wall: an “in situ” localization. Eur J Histochem. 2001;45(1):51–56.

Yin Y, Huang J, Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9(1):99. http://dx.doi.org/10.1186/1471-2229-9-99

Nobles DR Jr, Brown RM Jr. Many paths up the mountain: tracking the evolution of cellulose biosynthesis. In: Brown RM Jr, Saxena IM, editors. Cellulose: molecular and structural biology. Dordrecht: Springer; 2007. p. 1–15.

Yin Y, Johns MA, Cao H, Rupani M. A survey of plant and algal genomes and transcriptomes reveals new insights into the evolution and function of the cellulose synthase superfamily. BMC Genomics. 2014;15(1):260. http://dx.doi.org/10.1186/1471-2164-15-260

Carroll A, Specht CD. Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Sci. 2011;2:5. http://dx.doi.org/10.3389/fpls.2011.00005

Newman RH, Hill SJ, Harris PJ. Wide-angle x-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Plant Physiol. 2013;163(4):1558–1567. http://dx.doi.org/10.1104/pp.113.228262

Tsekos I. The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes. J Phycol. 1999;35(4):635–655. http://dx.doi.org/10.1046/j.1529-8817.1999.3540635.x

Nobles DR Jr, Brown RM Jr. The pivotal role of cyanobacteria in the evolution of cellulose synthases and cellulose synthase-like proteins. Cellulose. 2004;11(3–4):437–448. http://dx.doi.org/10.1023/B:CELL.0000046339.48003.0e

Roberts AW, Bushoven JT. The cellulose synthase (CESA) gene superfamily of the moss Physcomitrella patens. Plant Mol Biol. 2006;63(2):207–219. http://dx.doi.org/10.1007/s11103-006-9083-1

Roberts AW, Roberts EM, Delmer DP. Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum. Eukaryot Cell. 2002;1(6):847–855. http://dx.doi.org/10.1128/EC.1.6.847-855.2002

Lewis LA, McCourt RM. Green algae and the origin of land plants. Am J Bot. 2004;91(10):1535–1556. http://dx.doi.org/10.3732/ajb.91.10.1535

Roberts AW, Roberts EM, Haigler CH. Moss cell walls: structure and biosynthesis. Front Plant Sci. 2012;3:166. http://dx.doi.org/10.3389/fpls.2012.00166

Wise HZ, Saxena IM, Brown RM. Isolation and characterization of the cellulose synthase genes PpCesA6 and PpCesA7 in Physcomitrella patens. Cellulose. 2011;18(2):371–384. http://dx.doi.org/10.1007/s10570-010-9479-6

Tanaka K. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol. 2003;133(1):73–83. http://dx.doi.org/10.1104/pp.103.022442

Djerbi S, Lindskog M, Arvestad L, Sterky F, Teeri TT. The genome sequence of black cottonwood (Populus trichocarpa) reveals 18 conserved cellulose synthase (CesA) genes. Planta. 2005;221(5):739–746. http://dx.doi.org/10.1007/s00425-005-1498-4

Nairn CJ, Haselkorn T. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytol. 2005;166(3):907–915. http://dx.doi.org/10.1111/j.1469-8137.2005.01372.x

Franková L, Fry SC. Phylogenetic variation in glycosidases and glycanases acting on plant cell wall polysaccharides, and the detection of transglycosidase and trans-β-xylanase activities. Plant J. 2011;67(4):662–681. http://dx.doi.org/10.1111/j.1365-313X.2011.04625.x

Harholt J, Sørensen I, Fangel J, Roberts A, Willats WGT, Scheller HV, et al. The glycosyltransferase repertoire of the spikemoss Selaginella moellendorffii and a comparative study of its cell wall. PLoS ONE. 2012;7(5):e35846. http://dx.doi.org/10.1371/journal.pone.0035846

van Sandt VST, Stieperaere H, Guisez Y, Verbelen JP, Vissenberg K. XET activity is found near sites of growth and cell elongation in bryophytes and some green algae: new insights into the evolution of primary cell wall elongation. Ann Bot. 2007;99(1):39–51. http://dx.doi.org/10.1093/aob/mcl232

Vogel J. Unique aspects of the grass cell wall. Curr Opin Plant Biol. 2008;11(3):301–307. http://dx.doi.org/10.1016/j.pbi.2008.03.002

Mellerowicz EJ, Sundberg B. Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol. 2008;11(3):293–300. http://dx.doi.org/10.1016/j.pbi.2008.03.003

Nishikubo N, Takahashi J, Roos AA, Derba-Maceluch M, Piens K, Brumer H, et al. XET-mediated xyloglucan rearrangements in developing wood of hybrid aspen. Plant Physiol. 2011;155:399–413. http://dx.doi.org/10.1104/pp.110.166934

Scheller HV, Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010;61(1):263–289. http://dx.doi.org/10.1146/annurev-arplant-042809-112315

Popper ZA. Primary cell wall composition of bryophytes and charophytes. Ann Bot. 2003;91(1):1–12. http://dx.doi.org/10.1093/aob/mcg013

Fry SC, Nesselrode BHWA, Miller JG, Mewburn BR. Mixed-linkage (1→3,1→4)-β-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls. New Phytol. 2008;179(1):104–115. http://dx.doi.org/10.1111/j.1469-8137.2008.02435.x

Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J, et al. High-throughput mapping of cell-wall polymers within and between plants using novel microarrays: glycan microarrays for plant cell-wall analysis. Plant J. 2007;50(6):1118–1128. http://dx.doi.org/10.1111/j.1365-313X.2007.03114.x

Popper Z. Evolution and diversity of green plant cell walls. Curr Opin Plant Biol. 2008;11(3):286–292. http://dx.doi.org/10.1016/j.pbi.2008.02.012

Estevez JM, Fernandez PV, Kasulin L, Dupree P, Ciancia M. Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology. 2008;19(3):212–228. http://dx.doi.org/10.1093/glycob/cwn101

Schröder R, Atkinson RG, Redgwell RJ. Re-interpreting the role of endo-β-mannanases as mannan endotransglycosylase/hydrolases in the plant cell wall. Ann Bot. 2009;104(2):197–204. http://dx.doi.org/10.1093/aob/mcp120

Chanzy HD, Grosrenaud A, Vuong R, Mackie W. The crystalline polymorphism of mannan in plant cell walls and after recrystallisation. Planta. 1984;161(4):320–329. http://dx.doi.org/10.1007/BF00398722

Mackie W, Preston RD. The occurrence of mannan microfibrils in the green algae Codium fragile and Acetabularia crenulata. Planta. 1968;79(3):249–253. http://dx.doi.org/10.1007/BF00396031

Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ. Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res. 1998;307(3–4):299–309. http://dx.doi.org/10.1016/S0008-6215(98)00004-4

Hosoo Y, Imai T, Yoshida M. Diurnal differences in the supply of glucomannans and xylans to innermost surface of cell walls at various developmental stages from cambium to mature xylem in Cryptomeria japonica. Protoplasma. 2006;229(1):11–19. http://dx.doi.org/10.1007/s00709-006-0190-2

Popper ZA, Fry SC. Primary cell wall composition of pteridophytes and spermatophytes. New Phytol. 2004;164(1):165–174. http://dx.doi.org/10.1111/j.1469-8137.2004.01146.x

Domozych DS, Sorensen I, Willats WGT. The distribution of cell wall polymers during antheridium development and spermatogenesis in the Charophycean green alga, Chara corallina. Ann Bot. 2009;104(6):1045–1056. http://dx.doi.org/10.1093/aob/mcp193

Pena MJ, Darvill AG, Eberhard S, York WS, O’Neill MA. Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants. Glycobiology. 2008;18(11):891–904. http://dx.doi.org/10.1093/glycob/cwn078

Hoffman M, Jia Z, Peña MJ, Cash M, Harper A, Blackburn AR, et al. Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res. 2005;340(11):1826–1840. http://dx.doi.org/10.1016/j.carres.2005.04.016

Hsieh YSY, Harris PJ. Xyloglucans of monocotyledons have diverse structures. Mol Plant. 2009;2(5):943–965. http://dx.doi.org/10.1093/mp/ssp061

Tuomivaara ST, Yaoi K, O’Neill MA, York WS. Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res. 2015;402:56–66. http://dx.doi.org/10.1016/j.carres.2014.06.031

Smith BG, Harris PJ. The polysaccharide composition of Poales cell walls. Biochem Syst Ecol. 1999;27(1):33–53. http://dx.doi.org/10.1016/S0305-1978(98)00068-4

Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot. 2009;60(13):3615–3635. http://dx.doi.org/10.1093/jxb/erp245

Trethewey JAK, Campbell LM, Harris PJ. (1→3),(1→4)-β-D-glucans in the cell walls of the Poales (sensu lato): an immunogold labeling study using a monoclonal antibody. Am J Bot. 2005;92(10):1660–1674. http://dx.doi.org/10.3732/ajb.92.10.1660

Sørensen I, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A, et al. Mixed-linkage (1→3),(1→4)-β-D-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls. Plant J. 2008;54(3):510–521. http://dx.doi.org/10.1111/j.1365-313X.2008.03453.x

Bell PR. Green plants: their origin and diversity. 2nd ed. Cambridge: Cambridge University Press; 2000.

Hodson MJ, White PJ, Mead A, Broadley MR. Phylogenetic variation in the silicon composition of plants. Ann Bot. 2005;96(6):1027–1046. http://dx.doi.org/10.1093/aob/mci255

Carafa A, Duckett JG, Knox JP, Ligrone R. Distribution of cell-wall xylans in bryophytes and tracheophytes: new insights into basal interrelationships of land plants. New Phytol. 2005;168(1):231–240. http://dx.doi.org/10.1111/j.1469-8137.2005.01483.x

York W, Oneill M. Biochemical control of xylan biosynthesis – which end is up? Curr Opin Plant Biol. 2008;11(3):258–265. http://dx.doi.org/10.1016/j.pbi.2008.02.007

Kulkarni AR, Peña MJ, Avci U, Mazumder K, Urbanowicz BR, Pattathil S, et al. The ability of land plants to synthesize glucuronoxylans predates the evolution of tracheophytes. Glycobiology. 2012;22(3):439–451. http://dx.doi.org/10.1093/glycob/cwr117

Lahaye M, Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules. 2007;8(6):1765–1774. http://dx.doi.org/10.1021/bm061185q

Painter TJ, Aspinall GO. Algal polysaccharides. In: The polysaccharides. New York, NY: Academic Press; 1983. p. 195–285. (vol 2).

Turvey JR, Williams EL. The structures of some xylans from red algae. Phytochemistry. 1970;9(11):2383–2388. http://dx.doi.org/10.1016/S0031-9422(00)85744-1

Richmond TA. The cellulose synthase superfamily. Plant Physiol. 2000;124(2):495–498. http://dx.doi.org/10.1104/pp.124.2.495

Keegstra K, Walton J. Plant science. Beta-glucans – brewer’s bane, dietician’s delight. Science. 2006;311(5769):1872–1873. http://dx.doi.org/10.1126/science.1125938

Liepman AH, Wilkerson CG, Keegstra K. Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA. 2005;102(6):2221–2226. http://dx.doi.org/10.1073/pnas.0409179102

Lerouxel O, Cavalier DM, Liepman AH, Keegstra K. Biosynthesis of plant cell wall polysaccharides – a complex process. Curr Opin Plant Biol. 2006;9(6):621–630. http://dx.doi.org/10.1016/j.pbi.2006.09.009

Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, et al. A gene from the cellulose synthase-like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci USA. 2007;104(20):8550–8555. http://dx.doi.org/10.1073/pnas.0703133104

Verhertbruggen Y, Yin L, Oikawa A, Scheller HV. Mannan synthase activity in the CSLD family. Plant Signal Behav. 2011;6(10):1620–1623. http://dx.doi.org/10.4161/psb.6.10.17989

Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, et al. The cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development. Mol Plant. 2011;4(6):1024–1037. http://dx.doi.org/10.1093/mp/ssr026

Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Medhurst A, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science. 2006;311(5769):1940–1942. http://dx.doi.org/10.1126/science.1122975

Buschiazzo E, Ritland C, Bohlmann J, Ritland K. Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evol Biol. 2012;12(1):8. http://dx.doi.org/10.1186/1471-2148-12-8

Burton RA, Jobling SA, Harvey AJ, Shirley NJ, Mather DE, Bacic A, et al. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley (Hordeum vulgare L.). Plant Physiol. 2008;146(4):1821–1833. http://dx.doi.org/10.1104/pp.107.114694

Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, et al. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA. 2009;106(14):5996–6001. http://dx.doi.org/10.1073/pnas.0902019106

Burton RA, Fincher GB. (1,3;1,4)-β-D-glucans in cell walls of the Poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant. 2009;2(5):873–882. http://dx.doi.org/10.1093/mp/ssp063

Fincher GB. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: comparative genomics can help! Curr Opin Plant Biol. 2009;12(2):140–147. http://dx.doi.org/10.1016/j.pbi.2009.01.002

Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, et al. OsGLU1, a putative membrane-bound endo-1,4-β-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol. 2006;60(1):137–151. http://dx.doi.org/10.1007/s11103-005-2972-x

Ren Y, Hansen SF, Ebert B, Lau J, Scheller HV. Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: glycosyltransferase activity is not required for IRX9 function in Arabidopsis. PLoS ONE. 2014;9(8):e105014. http://dx.doi.org/10.1371/journal.pone.0105014

Jensen JK, Johnson NR, Wilkerson CG. Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases. Plant J. 2014;80(2):207–215. http://dx.doi.org/10.1111/tpj.12641

Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J. 2014;80(2):197–206. http://dx.doi.org/10.1111/tpj.12643

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucl Acids Res. 2009;37(database):D233–D238. http://dx.doi.org/10.1093/nar/gkn663

Yuan JS, Yang X, Lai J, Lin H, Cheng ZM, Nonogaki H, et al. The endo-β-mannanase gene families in Arabidopsis, rice, and poplar. Funct Integr Genomics. 2006;7(1):1–16. http://dx.doi.org/10.1007/s10142-006-0034-3

Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, et al. Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J. 2007;52(6):1154–1168. http://dx.doi.org/10.1111/j.1365-313X.2007.03307.x

Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye ZH. The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol. 2007;48(12):1659–1672. http://dx.doi.org/10.1093/pcp/pcm155

Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, et al. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. New Phytol. 2015;205(2):666–681. http://dx.doi.org/10.1111/nph.13099

Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J. 1992;282(pt 3):821–828.

Nishitani K, Tominaga R. Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem. 1992;267(29):21058–21064.

Nishitani K, Vissenberg K. Roles of the XTH protein family in the expanding cell. In: Verbelen JP, Vissenberg K, editors. The expanding cell. Berlin: Springer; 2006. p. 89–116. (Plant cell monographs). http://dx.doi.org/10.1007/7089_2006_072

Baumann MJ, Eklof JM, Michel G, Kallas AM, Teeri TT, Czjzek M, et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. Plant Cell. 2007;19(6):1947–1963. http://dx.doi.org/10.1105/tpc.107.051391

Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, et al. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst. 1998;29(1):263–292. http://dx.doi.org/10.1146/annurev.ecolsys.29.1.263

Strohmeier M, Hrmova M, Fischer M, Harvey AJ, Fincher GB, Pleiss J. Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the Poaceae. Protein Sci. 2009;13(12):3200–3213. http://dx.doi.org/10.1110/ps.04828404

Lahaye M, Jegou D, Buleon A. Chemical characteristics of insoluble glucans from the cell wall of the marine green alga Ulva lactuca (L.) Thuret. Carbohydr Res. 1994;262(1):115–125. http://dx.doi.org/10.1016/0008-6215(94)84008-3

Ray B, Lahaye M. Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta). Chemical structure of ulvan. Carbohydr Res. 1995;274:313–318. http://dx.doi.org/10.1016/0008-6215(95)00059-3

Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, et al. Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress tolerance in tobacco. Planta. 2008;227(4):867–881. http://dx.doi.org/10.1007/s00425-007-0663-3

Eklof JM, Shojania S, Okon M, McIntosh LP, Brumer H. Structure-function analysis of a broad specificity Populus trichocarpa endo-glucanase reveals an evolutionary link between bacterial licheninases and plant XTH gene products. J Biol Chem. 2013;288(22):15786–15799. http://dx.doi.org/10.1074/jbc.M113.462887

Fry SC, Mohler KE, Nesselrode BHWA, Frankov L. Mixed-linkage β-glucan: xyloglucan endotransglucosylase, a novel wall-remodeling enzyme from Equisetum (horsetails) and charophytic algae. Plant J. 2008;55(2):240–252. http://dx.doi.org/10.1111/j.1365-313X.2008.03504.x

Mohler KE, Simmons TJ, Fry SC. Mixed-linkage glucan:xyloglucan endotransglucosylase (MXE) re-models hemicelluloses in Equisetum shoots but not in barley shoots or Equisetum callus. New Phytol. 2013;197(1):111–122. http://dx.doi.org/10.1111/j.1469-8137.2012.04371.x

Hrmova M, Farkas V, Lahnstein J, Fincher GB. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem. 2007;282(17):12951–12962. http://dx.doi.org/10.1074/jbc.M611487200

Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–861. http://dx.doi.org/10.1038/nrm1746

Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hématy K, et al. Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J. 2007;50(4):605–614. http://dx.doi.org/10.1111/j.1365-313X.2007.03086.x

Krupková E, Immerzeel P, Pauly M, Schmülling T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J. 2007;50(4):735–750. http://dx.doi.org/10.1111/j.1365-313X.2007.03123.x

McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT. Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol. 2014;14(1):79. http://dx.doi.org/10.1186/1471-2229-14-79

Atmodjo MA, Hao Z, Mohnen D. Evolving views of pectin biosynthesis. Annu Rev Plant Biol. 2013;64(1):747–779. http://dx.doi.org/10.1146/annurev-arplant-042811-105534

Braccini I, Pérez S. Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules. 2001;2(4):1089–1096. http://dx.doi.org/10.1021/bm010008g

Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol. 2008;11(3):266–277. http://dx.doi.org/10.1016/j.pbi.2008.03.006

Proseus TE, Boyer JS. Calcium pectate chemistry controls growth rate of Chara corallina. J Exp Bot. 2006;57(15):3989–4002. http://dx.doi.org/10.1093/jxb/erl166

Domozych DS, Serfis A, Kiemle SN, Gretz MR. The structure and biochemistry of charophycean cell walls: I. Pectins of Penium margaritaceum. Protoplasma. 2007;230(1-2):99–115. http://dx.doi.org/10.1007/s00709-006-0197-8

Eder M, Lütz-Meindl U. Analyses and localization of pectin-like carbohydrates in cell wall and mucilage of the green alga Netrium digitus. Protoplasma. 2010;243(1–4):25–38. http://dx.doi.org/10.1007/s00709-009-0040-0

O’Neill MA, Warrenfeltz D, Kates K, Pellerin P, Doco T, Darvill AG, et al. Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester. J Biol Chem. 1996;271(37):22923–22930. http://dx.doi.org/10.1074/jbc.271.37.22923

O’Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science. 2001;294(5543):846–849. http://dx.doi.org/10.1126/science.1062319

Perez S, Rodríguez-Carvajal MA, Doco T. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie. 2003;85(1–2):109–121. http://dx.doi.org/10.1016/S0300-9084(03)00053-1

Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, et al. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol. 2004;134(1):339–351. http://dx.doi.org/10.1104/pp.103.030072

Pabst M, Fischl RM, Brecker L, Morelle W, Fauland A, Köfeler H, et al. Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J. 2013;76:61–72. http://dx.doi.org/10.1111/tpj.12271

York WS, Darvill AG, McNeil M, Albersheim P. 3-deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants. Carbohydr Res. 1985;138(1):109–126. http://dx.doi.org/10.1016/0008-6215(85)85228-9

Becker B, Becker D, Kamerling JP, Melkonian M. 2-keto-sugar acids in green flagellates: a chemical marker for prasinophycean scales. J Phycol. 1991;27(4):498–504. http://dx.doi.org/10.1111/j.0022-3646.1991.00498.x

Royo J, Gımez E, Hueros G. CMP–KDO synthetase: a plant gene borrowed from gram-negative eubacteria. Trends Genet. 2000;16(10):432–433. http://dx.doi.org/10.1016/S0168-9525(00)02102-8

Harholt J, Suttangkakul A, Vibe Scheller H. Biosynthesis of pectin. Plant Physiol. 2010;153(2):384–395. http://dx.doi.org/10.1104/pp.110.156588

Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem. 2001;276(22):19404–19413. http://dx.doi.org/10.1074/jbc.M011242200

Peter G, Neale D. Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol. 2004;7(6):737–742. http://dx.doi.org/10.1016/j.pbi.2004.09.002

Boyce CK, Zwieniecki MA, Cody GD, Jacobsen C, Wirick S, Knoll AH, et al. Evolution of xylem lignification and hydrogel transport regulation. Proc Natl Acad Sci USA. 2004;101(50):17555–17558. http://dx.doi.org/10.1073/pnas.0408024101

Raven JA. Physiological correlates of the morphology of early vascular plants. Biol J Linn Soc. 1984;88(1–2):105–126. http://dx.doi.org/10.1111/j.1095-8339.1984.tb01566.x

Weng JK, Chapple C. The origin and evolution of lignin biosynthesis. New Phytol. 2010;187(2):273–285. http://dx.doi.org/10.1111/j.1469-8137.2010.03327.x

Coleman HD, Samuels AL, Guy RD, Mansfield SD. Perturbed lignification impacts tree growth in hybrid poplar – a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol. 2008;148(3):1229–1237. http://dx.doi.org/10.1104/pp.108.125500

Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH, Favery B, et al. Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog. 2009;5(1):e1000264. http://dx.doi.org/10.1371/journal.ppat.1000264

Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008;55(3):491–503. http://dx.doi.org/10.1111/j.1365-313X.2008.03524.x

Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol. 2004;161(3):641–675. http://dx.doi.org/10.1111/j.1469-8137.2004.00980.x

Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, et al. Toward a systems approach to understanding plant cell walls. Science. 2004;306(5705):2206–2211. http://dx.doi.org/10.1126/science.1102765

Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–546. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134938

Boudet AM, Lapierre C, Grima-Pettenati J. Biochemistry and molecular biology of lignification. New Phytol. 1995;129(2):203–236. http://dx.doi.org/10.1111/j.1469-8137.1995.tb04292.x

Barceló AR, Ros LVG, Gabaldón C, López-Serrano M, Pomar F, Carrión JS, et al. Basic peroxidases: the gateway for lignin evolution? Phytochem Rev. 2004;3(1–2):61–78. http://dx.doi.org/10.1023/B:PHYT.0000047803.49815.1a

Espiñeira JM, Novo Uzal E, Gómez Ros LV, Carrión JS, Merino F, Ros Barceló A, et al. Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol. 2011;13(1):59–68. http://dx.doi.org/10.1111/j.1438-8677.2010.00345.x

Ralph J, Bunzel M, Marita JM, Hatfield RD, Lu F, Kim H, et al. Peroxidase-dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. Phytochem Rev. 2004;3(1–2):79–96. http://dx.doi.org/10.1023/B:PHYT.0000047811.13837.fb

Jin Z, Matsumoto Y, Tange T, Akiyama T, Higuchi M, Ishii T, et al. Proof of the presence of guaiacyl–syringyl lignin in Selaginella tamariscina. J Wood Sci. 2005;51(4):424–426. http://dx.doi.org/10.1007/s10086-005-0725-8

Gómez Ros LV, Gabaldón C, Pomar F, Merino F, Pedreño MA, Barceló AR. Structural motifs of syringyl peroxidases predate not only the gymnosperm-angiosperm divergence but also the radiation of tracheophytes. New Phytol. 2007;173(1):63–78. http://dx.doi.org/10.1111/j.1469-8137.2006.01898.x

Weng JK, Li X, Stout J, Chapple C. Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA. 2008;105(22):7887–7892. http://dx.doi.org/10.1073/pnas.0801696105

Lewis NG, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41(1):455–496. http://dx.doi.org/10.1146/annurev.pp.41.060190.002323

Siegel SM. Evidence for the presence of lignin in moss gametophytes. Am J Bot. 1969;56(2):175. http://dx.doi.org/10.2307/2440703

Reznikov VM, Mikhaseva M, Zil’bergleit M. The lignin of the alga Fucus vesiculosus. Chem Nat Comp. 1978;14:554–556.

Delwiche CF, Graham LE, Thomson N. Lignin-like compounds and sporopollenin Coleochaete, an algal model for land plant ancestry. Science. 1989;245(4916):399–401. http://dx.doi.org/10.1126/science.245.4916.399

Ligrone R, Carafa A, Duckett JG, Renzaglia KS, Ruel K. Immunocytochemical detection of lignin-related epitopes in cell walls in bryophytes and the charalean alga Nitella. Plant Syst Evol. 2008;270(3–4):257–272. http://dx.doi.org/10.1007/s00606-007-0617-z

Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, et al. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics. 2009;10(11 suppl):S3. http://dx.doi.org/10.1186/1471-2105-10-S11-S3

Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol. 2009;19(2):169–175. http://dx.doi.org/10.1016/j.cub.2008.12.031

Boudet AM, Kajita S, Grima-Pettenati J, Goffner D. Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci. 2003;8(12):576–581. http://dx.doi.org/10.1016/j.tplants.2003.10.001

Nishiyama T, Fujita T, Shin-I T, Seki M, Nishide H, Uchiyama I, et al. Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA. 2003;100(13):8007–8012. http://dx.doi.org/10.1073/pnas.0932694100

Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA. 1998;95(12):6619–6623.

Xue X, Fry SC. Evolution of mixed-linkage (1→3,1→4)-β-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. Ann Bot. 2012;109(5):873–886. http://dx.doi.org/10.1093/aob/mcs018