Oxygenic photosynthesis: translation to solar fuel technologies

Julian David Janna Olmos, Joanna Kargul


Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar energy conversion into fuel not only efficient but also cost effective, therefore attractive to the consumer, should be properly addressed.


solar fuels; photosystem I; photosystem II; CO2; photosynthesis; artificial leaf; artificial photosynthesis; solar-to-fuel nanodevices

Full Text:



Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37(1):181–189. http://dx.doi.org/10.1016/j.enpol.2008.08.016

Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, et al. Future prospects of microalgal biofuel production systems. Trends Plant Sci. 2010;15(10):554–564. http://dx.doi.org/10.1016/j.tplants.2010.06.003

Industries [Internet]. Shell global. 2014 [cited 2014 Sep 9]; Available from: http://www.shell.com/global/products-services/solutions-for-businesses/lubes/industries.html

Barber J, Tran PD. From natural to artificial photosynthesis. Interface Focus. 2013;10(81):20120984. http://dx.doi.org/10.1098/rsif.2012.0984

Kargul J, Barber J. Structure and function of photosynthetic reaction centres. In: Wydrzynski TJ, Hillier W, editors. Molecular solar fuels. Cambridge: Royal Society of Chemistry; 2011. p. 107–142. http://dx.doi.org/10.1039/9781849733038-00107

Larkum AWD. Evolution of the reaction centers and photosystems. In: Renger G, editor. Primary processes of photosynthesis: principles and apparatus. Cambridge: Royal Society of Chemistry; 2008. p. 489–521.

Barber J. Engine of life and big bang of evolution: a personal perspective. Photosynth Res. 2004;80(1–3):137–155. http://dx.doi.org/10.1023/B:PRES.0000030662.04618.27

Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu Rev Plant Biol. 2011;62(1):515–548. http://dx.doi.org/10.1146/annurev-arplant-042110-103811

Hurles M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2004;2(7):e206. http://dx.doi.org/10.1371/journal.pbio.0020206

Pennisi E. Genome duplications: the stuff of evolution? Science. 2001;294(5551):2458–2460. http://dx.doi.org/10.1126/science.294.5551.2458

Raymond J, Blankenship RE. Horizontal gene transfer in eukaryotic algal evolution. Proc Natl Acad Sci USA. 2003;100(13):7419–7420. http://dx.doi.org/10.1073/pnas.1533212100

Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, Nagashima KV. Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol. 2001;52(4):333–341. http://dx.doi.org/10.1007/s002390010163

Sadekar S. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core. Mol Biol Evol. 2006;23(11):2001–2007. http://dx.doi.org/10.1093/molbev/msl079

Murray JW, Duncan J, Barber J. CP43-like chlorophyll binding proteins: structural and evolutionary implications. Trends Plant Sci. 2006;11(3):152–158. http://dx.doi.org/10.1016/j.tplants.2006.01.007

Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 2011;332(6031):805–809. http://dx.doi.org/10.1126/science.1200165

Berardi S, Drouet S, Francàs L, Gimbert-Suriñach C, Guttentag M, Richmond C, et al. Molecular artificial photosynthesis. Chem Soc Rev. 2014;43(22):7501–7519. http://dx.doi.org/10.1039/C3CS60405E

Field CB. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281(5374):237–240. http://dx.doi.org/10.1126/science.281.5374.237

Kargul J, Janna Olmos JD, Krupnik T. Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. J Plant Physiol. 2012;169(16):1639–1653. http://dx.doi.org/10.1016/j.jplph.2012.05.018

Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature. 2004;429(6991):579–582. http://dx.doi.org/10.1038/nature02598

Johnson GN. Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta. 2011;1807(3):384–389. http://dx.doi.org/10.1016/j.bbabio.2010.11.009

Joliot P, Johnson GN. Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA. 2011;108(32):13317–13322. http://dx.doi.org/10.1073/pnas.1110189108

Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell. 2013;49(3):511–523. http://dx.doi.org/10.1016/j.molcel.2012.11.030

DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell. 2008;132(2):273–285. http://dx.doi.org/10.1016/j.cell.2007.12.028

Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T. Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell. 2009;21(11):3623–3640. http://dx.doi.org/10.1105/tpc.109.068791

Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J. 2011;68(6):966–976. http://dx.doi.org/10.1111/j.1365-313X.2011.04747.x

Kukuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, et al. Proton gradient regulation5-like1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiol. 2014;165(4):1604–1617. http://dx.doi.org/10.1104/pp.114.240648

Nelson N, Yocum CF. Structure and function of photosystems I and II. Annu Rev Plant Biol. 2006;57(1):521–565. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105350

Cardona T, Sedoud A, Cox N, Rutherford AW. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim Biophys Acta. 2012;1817(1):26–43. http://dx.doi.org/10.1016/j.bbabio.2011.07.012

Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473(7345):55–60. http://dx.doi.org/10.1038/nature09913

Kanady JS, Tsui EY, Day MW, Agapie T. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II. Science. 2011;333(6043):733–736. http://dx.doi.org/10.1126/science.1206036

Ananyev G, Dismukes GC. How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res. 2005;84(1-3):355–365. http://dx.doi.org/10.1007/s11120-004-7081-1

Badura A, Kothe T, Schuhmann W, Rögner M. Wiring photosynthetic enzymes to electrodes. Energy Environ Sci. 2011;4(9):3263. http://dx.doi.org/10.1039/c1ee01285a

Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001;411(6840):909–917. http://dx.doi.org/10.1038/35082000

Ben-Shem A, Frolow F, Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426(6967):630–635. http://dx.doi.org/10.1038/nature02200

Amunts A, Drory O, Nelson N. The structure of a plant photosystem I supercomplex at 3.4 A resolution. Nature. 2007;447(7140):58–63. http://dx.doi.org/10.1038/nature05687

Nguyen K, Bruce BD. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. Biochim Biophys Acta. 2014;1837(9):1553–1566. http://dx.doi.org/10.1016/j.bbabio.2013.12.013

Ocakoglu K, Krupnik T, van den Bosch B, Harputlu E, Gullo MP, Olmos JDJ, et al. Photosystem I-based biophotovoltaics on nanostructured hematite. Adv Funct Mater. 2014 (in press). http://dx.doi.org/10.1002/adfm.201401399

Pandey D, Agrawal M. Carbon footprint estimation in the agriculture sector. In: Muthu SS, editor. Assessment of carbon footprint in different industrial sectors. Singapore: Springer; 2014. p. 25–47. (vol 1). http://dx.doi.org/10.1007/978-981-4560-41-2_2

Jajesniak P, Ali H, Wong TS. Carbon dioxide capture and utilization using biological systems: opportunities and challenges. J Bioprocess Biotech. 2014;4(155). http://dx.doi.org/10.4172/2155-9821.1000155

Zhao B, Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev. 2014;31:121–132. http://dx.doi.org/10.1016/j.rser.2013.11.054

Oliver JWK, Machado IMP, Yoneda H, Atsumi S. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng. 2014;22:76–82. http://dx.doi.org/10.1016/j.ymben.2014.01.001

Machado IMP, Atsumi S. Cyanobacterial biofuel production. J Biotech. 2012;162(1):50–56. http://dx.doi.org/10.1016/j.jbiotec.2012.03.005

Rabinovitch-Deere CA, Oliver JWK, Rodriguez GM, Atsumi S. Synthetic biology and metabolic engineering approaches to produce biofuels. Chem Rev. 2013;113(7):4611–4632. http://dx.doi.org/10.1021/cr300361t

Smith KS, Ferry JG. Prokaryotic carbonic anhydrases. FEMS Microbiol Rev. 2000;24(4):335–366. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00546.x

Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotech. 2012;162(1):134–147. http://dx.doi.org/10.1016/j.jbiotec.2012.05.006

Quintana N, van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol. 2011;91(3):471–490. http://dx.doi.org/10.1007/s00253-011-3394-0

Das D. Hydrogen production by biological processes: a survey of literature. Int J Hydrog. Energy. 2001;26(1):13–28. http://dx.doi.org/10.1016/S0360-3199(00)00058-6

Abed RMM, Dobretsov S, Sudesh K. Applications of cyanobacteria in biotechnology. J Appl Microbiol. 2009;106(1):1–12. http://dx.doi.org/10.1111/j.1365-2672.2008.03918.x

Dutta D, De D, Chaudhuri S, Bhattacharya SK. Hydrogen production by cyanobacteria. Microb Cell Fact. 2005;4(1):36. http://dx.doi.org/10.1186/1475-2859-4-36

Melis A, Zhang L, Forestier M, Ghirardi M, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol. 2000;122(1):127–136. http://dx.doi.org/10.1104/pp.122.1.127

Kruse O, Rupprecht J, Bader K-P, Thomas-Hall S, Schenk PM, Finazzi G, et al. Improved photobiological H2 production in engineered green algal cells. J Biol Chem. 2005;280(40):34170–34177. http://dx.doi.org/10.1074/jbc.M503840200

Kargul J, Barber J. Photosynthetic acclimation: structural reorganisation of light harvesting antenna - role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. FEBS J. 2008;275(6):1056–1068. http://dx.doi.org/10.1111/j.1742-4658.2008.06262.x

Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, et al. RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS ONE. 2013;8(4):e61375. http://dx.doi.org/10.1371/journal.pone.0061375

Angermayr SA, Hellingwerf KJ, Lindblad P, Teixeira de Mattos MJ. Energy biotechnology with cyanobacteria. Curr Opin Biotechnol. 2009;20(3):257–263. http://dx.doi.org/10.1016/j.copbio.2009.05.011

Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol. 2015;33:8–14. http://dx.doi.org/10.1016/j.copbio.2014.09.007

van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ. Carbon sink removal: increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J Biotech. 2014;184:100–102. http://dx.doi.org/10.1016/j.jbiotec.2014.04.029

Wijffels RH, Kruse O, Hellingwerf KJ. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol. 2013;24(3):405–413. http://dx.doi.org/10.1016/j.copbio.2013.04.004

Gao Z, Zhao H, Li Z, Tan X, Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci. 2012;5(12):9857. http://dx.doi.org/10.1039/c2ee22675h

Qi F, Yao L, Tan X, Lu X. Construction, characterization and application of molecular tools for metabolic engineering of Synechocystis sp. Biotechnol Lett. 2013;35(10):1655–1661. http://dx.doi.org/10.1007/s10529-013-1252-0

Ho SH, Ye X, Hasunuma T, Chang JS, Kondo A. Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review. Biotechnol Adv. 2014;32(8):1448–1459. http://dx.doi.org/10.1016/j.biotechadv.2014.09.002

PC Lai E. Biodiesel: environmental friendly alternative to petrodiesel. J Pet Env. Biotechnol. 2014;5(1). http://dx.doi.org/10.4172/2157-7463.1000e122

Ragauskas AME, Ragauskas AJ. Re-defining the future of FOG and biodiesel. J Pet Environ Biotechnol. 2013;4(1). http://dx.doi.org/10.4172/2157-7463.1000e118

Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, et al. Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013;2(3):258–267. http://dx.doi.org/10.1016/j.algal.2013.04.003

Trudewind CA, Schreiber A, Haumann D. Photocatalytic methanol and methane production using captured CO2 from coal power plants. Part II – well-to-wheel analysis on fuels for passenger transportation services. J Clean Prod. 2014;70:38–49. http://dx.doi.org/10.1016/j.jclepro.2014.02.024

Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv. 2009;27(4):409–416. http://dx.doi.org/10.1016/j.biotechadv.2009.03.001

Rittmann BE. Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng. 2008;100(2):203–212. http://dx.doi.org/10.1002/bit.21875

Thapper A, Styring S, Saracco G, Rutherford AW, Robert B, Magnuson A, et al. Artificial photosynthesis for solar fuels – an evolving research field within AMPEA, a joint programme of the european energy research alliance. Green. 2013;3(1):43–57. http://dx.doi.org/10.1515/green-2013-0007

Ocakoglu K, Joya KS, Harputlu E, Tarnowska A, Gryko DT. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates. Nanoscale. 2014;6(16):9625. http://dx.doi.org/10.1039/C4NR01661K

Llansola-Portoles MJ, Bergkamp JJ, Tomlin J, Moore TA, Kodis G, Moore AL, et al. Photoinduced electron transfer in perylene-TiO2 nanoassemblies. Photochem Photobiol. 2013;89(6):1375–1382. http://dx.doi.org/10.1111/php.12108

Ihssen J, Braun A, Faccio G, Gajda-Schrantz K, Thöny-Meyer L. Light harvesting proteins for solar fuel generation in bioengineered photoelectrochemical cells. Curr Protein Pept Sci. 2014;15(4):374–384. http://dx.doi.org/10.2174/1389203715666140327105530

Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat Chem. 2012;4(5):418–423. http://dx.doi.org/10.1038/nchem.1301

Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+. Science. 2008;321(5892):1072–1075. http://dx.doi.org/10.1126/science.1162018

Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science. 2011;334(6056):645–648. http://dx.doi.org/10.1126/science.1209816

Kanan MW, Yano J, Surendranath Y, Dincă M, Yachandra VK, Nocera DG. Structure and valency of a cobalt−phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J Am Chem Soc. 2010;132(39):13692–13701. http://dx.doi.org/10.1021/ja1023767

Tran PD, Wong LH, Barber J, Loo JSC. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ Sci. 2012;5(3):5902. http://dx.doi.org/10.1039/c2ee02849b

Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem. 2012;5(3):500–521. http://dx.doi.org/10.1002/cssc.201100661

Kim JH, Nam DH, Park CB. Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol. 2014;28:1–9. http://dx.doi.org/10.1016/j.copbio.2013.10.008

Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89. http://dx.doi.org/10.1039/b804323j

Bora DK, Braun A, Constable EC. “In rust we trust”. Hematite – the prospective inorganic backbone for artificial photosynthesis. Energy Environ Sci. 2013;6(2):407–425. http://dx.doi.org/10.1039/C2EE23668K

Bora DK, Braun A, Erni R, Müller U, Döbeli M, Constable EC. Hematite–NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys Chem Chem Phys. 2013;15(30):12648. http://dx.doi.org/10.1039/c3cp52179f

Gajda-Schrantz K, Tymen S, Boudoire F, Toth R, Bora DK, Calvet W, et al. Formation of an electron hole doped film in the α-Fe2O3 photoanode upon electrochemical oxidation. Phys Chem Chem Phys. 2013;15(5):1443. http://dx.doi.org/10.1039/c2cp42597a

Bora DK, Rozhkova EA, Schrantz K, Wyss PP, Braun A, Graule T, et al. Functionalization of nanostructured hematite thin-film electrodes with the light-harvesting membrane protein C-phycocyanin yields an enhanced photocurrent. Adv Funct Mater. 2012;22(3):490–502. http://dx.doi.org/10.1002/adfm.201101830

Kothe T, Plumeré N, Badura A, Nowaczyk MM, Guschin DA, Rögner M, et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed Engl. 2013;52(52):14233–14236. http://dx.doi.org/10.1002/anie.201303671

Badura A, Guschin D, Esper B, Kothe T, Neugebauer S, Schuhmann W, et al. Photo-induced electron transfer between photosystem 2 via cross-linked redox hydrogels. Electroanalysis. 2008;20(10):1043–1047. http://dx.doi.org/10.1002/elan.200804191

Badura A, Guschin D, Kothe T, Kopczak MJ, Schuhmann W, Rögner M. Photocurrent generation by photosystem 1 integrated in crosslinked redox hydrogels. Energy Environ Sci. 2011;4(7):2435. http://dx.doi.org/10.1039/c1ee01126j

Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, et al. Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep. 2012;2:1–7. http://dx.doi.org/10.1038/srep00234

Wenk SO, Qian DJ, Wakayama T, Nakamura C, Zorin N, Rögner M, et al. Biomolecular device for photoinduced hydrogen production. Int J Hydrog. Energy. 2002;27(11–12):1489–1493. http://dx.doi.org/10.1016/S0360-3199(02)00094-0

Yehezkeli O, Tel-Vered R, Michaeli D, Nechushtai R, Willner I. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small. 2013;9(17):2970–2978. http://dx.doi.org/10.1002/smll.201300051

Wang W, Chen J, Li C, Tian W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun. 2014;5:4647. http://dx.doi.org/10.1038/ncomms5647

Kato M, Cardona T, Rutherford AW, Reisner E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium–tin oxide electrode. J Am Chem Soc. 2012;134(20):8332–8335. http://dx.doi.org/10.1021/ja301488d

Kato M, Cardona T, Rutherford AW, Reisner E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc. 2013;135(29):10610–10613. http://dx.doi.org/10.1021/ja404699h

Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun. 2012;3:1139. http://dx.doi.org/10.1038/ncomms2152

Engel GS, Calhoun TR, Read EL, Ahn TK, Mančal T, Cheng YC, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782–786. http://dx.doi.org/10.1038/nature05678

Zhou H, Guo J, Li P, Fan T, Zhang D, Ye J. Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO2 photoreduction into hydrocarbon fuels. Sci Rep. 2013;3:1667. http://dx.doi.org/10.1038/srep01667

Larkum AWD. Harvesting solar energy through natural or artificial photosynthesis: scientific, social, political and economic implications. In: Wydrzynski TJ, Hillier W, editors. Molecular solar fuels. Cambridge: Royal Society of Chemistry; 2011. p. 1–19. http://dx.doi.org/10.1039/9781849733038-00001

Kato M, Zhang JZ, Paul N, Reisner E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev. 2014;43(18):6485. http://dx.doi.org/10.1039/C4CS00031E

Redinbo MR, Cascio D, Choukair MK, Rice D, Merchant S, Yeates TO. The 1.5-.ANG. crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii. Biochemistry. 1993;32(40):10560–10567. http://dx.doi.org/10.1021/bi00091a005

Kameda H, Hirabayashi K, Wada K, Fukuyama K. Mapping of protein-protein interaction sites in the plant-type [2Fe-2S] ferredoxin. PloS One. 2011;6(7):e21947. http://dx.doi.org/10.1371/journal.pone.0021947

DOI: https://doi.org/10.5586/asbp.2014.037

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Polish Botanical Society