The Old and New RNA World

Zofia Szweykowska-Kulińska

Abstract


Among the numerous hypotheses offering a scenario for the origin of life on Earth, the one called “The RNA World” has gained the most attention. According to this hypothesis RNA acted as a genetic information storage material, as a catalyst of all metabolic reactions, and as a regulator of all processes in the primordial world. Various experiments show that RNA molecules could have been synthesized abiotically, with the potential to mediate a whole repertoire of metabolic reactions. Ribozymes carrying out aminoacyl-tRNA reactions have been found in SELEX (systematic evolution of ligands by exponential enrichment) approaches and the development of a ribosome from a RNA-built protoribosome is easy to imagine. Transfer RNA aminoacylation, protoribosome origin, and the availability of amino acids on early Earth allowed the genetic code to evolve. Encoded proteins most likely stabilized RNA molecules and were able to create channels across membranes. In the modern cell, DNA replaced RNA as the main depositor of genetic information and proteins carry out almost all metabolic reactions. However, RNA is still playing versatile, crucial roles in the cell. Apart from its classical functions in the cell, a huge small RNA world is controlling gene expression, chromatin condensation, response to environmental cues, and protecting the cell against the invasion of various nucleic acids forms. Long non-coding RNAs act as crucial gene expression regulators. Riboswitches act at the level of transcription, splicing or translation and mediate feedback regulation on biosynthesis and transport of the ligand they sense. Alternative splicing generates genetic variability and increases the protein repertoire in response to developmental or environmental changes. All these regulatory functions are essential in shaping cell plasticity in the changing milieu. Recent discoveries of new, unexpected and important functions of RNA molecules support the hypothesis that we live in a New RNA World.

Keywords


RNA World hypothesis; ribozyme; small RNAs; long noncoding RNAs; riboswitches; alternative splicing; New RNA World

Full Text:

PDF

References


Orgel LE. Evolution of the genetic apparatus. J Mol Biol. 1968;38(3):381–393.

Crick FH. The origin of the genetic code. J Mol Biol. 1968;38(3):367–379.

Woese CR. The genetic code: the molecular basis for genetic expression. New York, NY: Harper & Row; 1967.

Eigen M, Schuster P. A principle of natural self-organization. Naturwissenschaften. 1977;64(11):541–565. http://dx.doi.org/10.1007/BF00450633

Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982;31(1):147–157.

Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983;35(3 pt 2):849–857.

Leslie E. O. Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol. 2004;39(2):99–123. http://dx.doi.org/10.1080/10409230490460765

Powner MW, Gerland B, Sutherland JD. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 2009;459(7244):239–242. http://dx.doi.org/10.1038/nature08013

Bowler FR, Chan CKW, Duffy CD, Gerland B, Islam S, Powner MW, et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat Chem. 2013;5(5):383–389. http://dx.doi.org/10.1038/nchem.1626

Adamala K, Szostak JW. Nonenzymatic template-directed RNA synthesis inside model protocells. Science. 2013;342(6162):1098–1100. http://dx.doi.org/10.1126/science.1241888

Talini G, Gallori E, Maurel MC. Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol. 2009;160(7):457–465. http://dx.doi.org/10.1016/j.resmic.2009.05.005

Gold L, Janjic N, Jarvis T, Schneider D, Walker JJ, Wilcox SK, et al. Aptamers and the RNA world, past and present. Cold Spring Harb Perspect Biol. 2012;4(3):a003582. http://dx.doi.org/10.1101/cshperspect.a003582

Bartel DP, Szostak JW. Isolation of new ribozymes from a large pool of random sequences. Science. 1993;261(5127):1411–1418. http://dx.doi.org/10.1126/science.7690155

Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science. 2001;292(5520):1319–1325. http://dx.doi.org/10.1126/science.1060786

Lee N, Bessho Y, Wei K, Szostak JW, Suga H. Ribozyme-catalyzed tRNA aminoacylation. Nat Struct Mol Biol. 2000;7(1):28–33. http://dx.doi.org/10.1038/71225

Tsukiji S, Pattnaik SB, Suga H. An alcohol dehydrogenase ribozyme. Nat Struct Mol Biol. 2003;10(9):713–717. http://dx.doi.org/10.1038/nsb964

Serganov A, Keiper S, Malinina L, Tereshko V, Skripkin E, Höbartner C, et al. Structural basis for Diels–Alder ribozyme-catalyzed carbon-carbon bond formation. Nat Struct Mol Biol. 2005;12(3):218–224. http://dx.doi.org/10.1038/nsmb906

Jadhav VR, Yarus M. Acyl-CoAs from coenzyme ribozymes. Biochemistry (Mosc). 2002;41(3):723–729. http://dx.doi.org/10.1021/bi011803h

Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, et al. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci USA. 2011;108(14):5526–5531. http://dx.doi.org/10.1073/pnas.1019191108

Joyce GF. The antiquity of RNA-based evolution. Nature. 2002;418(6894):214–221. http://dx.doi.org/10.1038/418214a

Illangasekare M, Yarus M. A tiny RNA that catalyzes both aninoacyl-tRNA and peptidyl-RNA synthesis. RNA. 1999;5:1482–1489.

Steitz TA, Moore PB. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci. 2003;28(8):411–418. http://dx.doi.org/10.1016/S0968-0004(03)00169-5

Lear JD, Wasserman ZR, DeGrado WF. Synthetic amphiphilic peptide models for protein ion channels. Science. 1988;240(4856):1177–1181. http://dx.doi.org/10.1126/science.2453923

Hamilton AJ, Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science. 1999;286(5441):950–952. http://dx.doi.org/10.1126/science.286.5441.950

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. http://dx.doi.org/10.1038/35888

Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138(4):2145–2154. http://dx.doi.org/10.1104/pp.105.062943

Szweykowska-Kulińska Z, Jarmolowski A, Vazquez F. The crosstalk between plant microRNA biogenesis factors and the spliceosome. Plant Signal Behav. 2013;8(11):e26955. http://dx.doi.org/10.4161/psb.26955

Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science. 2008;320(5880):1185–1190. http://dx.doi.org/10.1126/science.1159151

Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell. 2004;16(1):69–79. http://dx.doi.org/10.1016/j.molcel.2004.09.028

Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell. 2005;121(2):207–221. http://dx.doi.org/10.1016/j.cell.2005.04.004

Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol. 2006;16(9):939–944. http://dx.doi.org/10.1016/j.cub.2006.03.065

Zhou C, Han L, Fu C, Wen J, Cheng X, Nakashima J, et al. The trans-acting short interfering RNA3 pathway and NO APICAL MERISTEM antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell. 2013;4845–4862. http://dx.doi.org/10.1105/tpc.113.117788

Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006;20(24):3407–3425. http://dx.doi.org/10.1101/gad.1476406

Chen HM, Li YH, Wu SH. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA. 2007;104(9):3318–3323. http://dx.doi.org/10.1073/pnas.0611119104

Vazquez F, Hohn T. Biogenesis and biological activity of secondary siRNAs in plants. Scientifica. 2013;2013:1–12. http://dx.doi.org/10.1155/2013/783253

Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell. 2005;123(7):1279–1291. http://dx.doi.org/10.1016/j.cell.2005.11.035

Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007;21(23):3123–3134. http://dx.doi.org/10.1101/gad.1595107

Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA. 2006;103(47):18002–18007. http://dx.doi.org/10.1073/pnas.0608258103

Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W. Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res. 2009;19(1):70–78. http://dx.doi.org/10.1101/gr.084806.108

Pikaard CS, Haag JR, Ream T, Wierzbicki AT. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci. 2008;13(7):390–397. http://dx.doi.org/10.1016/j.tplants.2008.04.008

Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol. 2009;21(3):367–376. http://dx.doi.org/10.1016/j.ceb.2009.01.025

Zheng B, Wang Z, Li S, Yu B, Liu JY, Chen X. Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev. 2009;23(24):2850–2860. http://dx.doi.org/10.1101/gad.1868009

Smith LM, Pontes O, Searle I, Yelina N, Yousafzai FK, Herr AJ, et al. An SNF2 protein associated with nuclear RNA silencing and the spread of a silencing signal between cells in Arabidopsis. Plant Cell. 2007;19(5):1507–1521. http://dx.doi.org/10.1105/tpc.107.051540

Wierzbicki AT, Ream TS, Haag JR, Pikaard CS. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet. 2009;41(5):630–634. http://dx.doi.org/10.1038/ng.365

Wierzbicki AT, Haag JR, Pikaard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell. 2008;135(4):635–648. http://dx.doi.org/10.1016/j.cell.2008.09.035

Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328(5980):872–875. http://dx.doi.org/10.1126/science.1187959

Vazquez F, Legrand S, Windels D. The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci. 2010;15(6):337–345. http://dx.doi.org/10.1016/j.tplants.2010.04.001

Bouche N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J. 2006;25(14):3347–3356. http://dx.doi.org/10.1038/sj.emboj.7601217

Voinnet O. Non-cell autonomous RNA silencing. FEBS Lett. 2005;579(26):5858–5871. http://dx.doi.org/10.1016/j.febslet.2005.09.039

Ding S-W, Voinnet O. Antiviral immunity directed by small RNAs. Cell. 2007;130(3):413–426. http://dx.doi.org/10.1016/j.cell.2007.07.039

Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell. 2012;24(11):4333–4345. http://dx.doi.org/10.1105/tpc.112.102855

Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell. 2014;55(3):383–396. http://dx.doi.org/10.1016/j.molcel.2014.06.011

Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell. 2002;111(5):747–756. http://dx.doi.org/10.1016/S0092-8674(02)01134-0

Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. 2002;419(6910):952–956. http://dx.doi.org/10.1038/nature01145

Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H. Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature. 2013;499(7458):355–359. http://dx.doi.org/10.1038/nature12378

Roth A, Breaker RR. The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem. 2009;78(1):305–334. http://dx.doi.org/10.1146/annurev.biochem.78.070507.135656

Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007;447(7143):497–500. http://dx.doi.org/10.1038/nature05769

Wachter A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol. 2010;7(1):67–76. http://dx.doi.org/10.4161/rna.7.1.10489

Simpson CG, Manthri S, Raczynska KD, Kalyna M, Lewandowska D, Kusenda B, et al. Regulation of plant gene expression by alternative splicing. Biochem Soc Trans. 2010;38(2):667. http://dx.doi.org/10.1042/BST0380667

Reddy ASN, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants. Plant Cell. 2013;25(10):3657–3683. http://dx.doi.org/10.1105/tpc.113.117523

Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–1415. http://dx.doi.org/10.1038/ng.259

Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, et al. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell. 2013;25(3):901–926. http://dx.doi.org/10.1105/tpc.113.110353

Remy E, Cabrito TR, Batista RA, Hussein MAM, Teixeira MC, Athanasiadis A, et al. Intron retention in the 5’UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in Arabidopsis. PLoS Genet. 2014;10(5):e1004375. http://dx.doi.org/10.1371/journal.pgen.1004375