Identification and quantitative determination of pinoresinol in Taxus ×media Rehder needles, cell suspension and shoot cultures

Paulina Mistrzak, Hanna Celejewska-Marciniak, Wojciech J. Szypuła, Olga Olszowska, Anna K. Kiss

Abstract


The aim of our study was to investigate the presence and quantitative contents of lignans in the tissues of Taxus ×media. The presence of the lignans: pinoresinol, matairesinol and secoisolariciresinol was assessed in needles, shoots cultures and suspension culture. Pinoresinol was the only lignan found in the tissue of T. ×media. The total pinoresinol content in the needles and in the shoots was 1.24 mg/g dry weight (dw) and 0.69 mg/g dw, respectively. Most of the pinoresinol identified was appeared glycosidically bound. In needles, the amount of glycosidically bound pinoresinol (0.81 mg/g dw) was about twice as high as that of free pinoresinol (0.43 mg/g dw). The content of free and glycosidically bound pinoresinol showed the level of 0.18 mg/g dw and 0.51 mg/g dw, respectively in the in vitro shoot cultures. In the cell culture, no pinoresinol was found.

Keywords


pinoresinol; Taxus ×media; shoot culture; suspension culture

Full Text:

PDF

References


Kingston DGI, Molinero AA, Rimoldi JM. The taxane diterpenoids. In: Herz W, Kirby GW, Moore RE, Steglich W, Tamm C, editors. Progress in the chemistry of organic natural products. New York, NY: Springer; 1993. p. 1–206. http://dx.doi.org/10.1007/978-3-7091-9242-9

Parmar VS, Jha A, Bisht KS, Taneja P, Singh SK, Kumar A, et al. Constituents of the yew trees. Phytochemistry. 1999;50:1267–1304. http://dx.doi.org/10.1002/chin.199929276

Lee KH, Xiao Z. Lignans in treatment of cancer and other diseases. Phytochem Rev. 2003;2:341–362. http://dx.doi.org/10.1023/B:PHYT.0000045495.59732.58

Umezawa T. Diversity in lignan biosynthesis. Phytochem Rev. 2003;2:371–390. http://dx.doi.org/10.1023/B:PHYT.0000045487.02836.32

Lewis NG, Davin LB. Lignans: biosynthesis and function. In: Sankawa U, editor. Comprehensive natural products chemistry. Amsterdam: Elsevier; 1999. p. 639–712. (vol 1). http://dx.doi.org/10.1021/bk-1995-0588.ch013

Umezawa T. Biosynthesis of lignans and related phenylpropanoid compounds. Reg Plant Growth Dev. 2001;36:57–67.

Umezawa T, Davin LB, Lewis NG, 1990. Formation of the lignan, (−)secoisolariciresinol, by cell free extracts of Forsythia intermedia. Biochem Biophys Res Commun. 1990;171:1008–1014. http://dx.doi.org/10.1016/0006-291X(90)90784-K

Katayama T, Davin LB, Lewis NG. An extraordinary accumulation of (−)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry. 1992;31:3875–3881. http://dx.doi.org/10.1016/S0031-9422(00)97545-9

Katayama T, Davin LB, Alex CA, Norman G. Lewis NG. Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia. Phytochemistry. 1993;33:581–591. http://dx.doi.org/10.1016/0031-9422(93)85452-W

Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M. Enantioselective lignan synthesis by cell-free extracts of Forsythia koreana. Biosci Biotechnol Biochem 1994;58:230–234. http://dx.doi.org/10.1271/bbb.58.230

Davin LB, Wang HB, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, et al. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (Dirigent) protein without an active center. Science. 1997;275:362–367. http://dx.doi.org/10.1126/science.275.5298.362

Topcu G, Demirkiran O. Lignans from Taxus species. Top Heterocycl Chem. 2007;11:103–144. http://dx.doi.org/10.1007/7081_2007_082

Shen YC, Chen CY, Lin YM, Kuo YH. A lignan from roots of Taxus mairei. Phytochemistry. 1997;46:1111–1113. http://dx.doi.org/10.1016/S0031-9422(97)00352-X

Shi QW, Oritani T, Sugiyama T, Yamada T. Taxane diterpenoids from the seeds of Chinese yew, Taxus mairei. Nat Prod Lett. 1999;13:179–186. http://dx.doi.org/10.1080/10575639908048784

Yang SJ, Fang JM, Cheng YS. Lignans, flavonoids and phenolic derivatives from Taxus mairei. J Chin Chem Soc. 1999;46:811–818. http://dx.doi.org/10.1002/jccs.199900109

Das B, Takhi M, Srinivas KVNS, Yadav JS. Phenolics from needles of himalayan Taxus baccata. Phytochemistry. 1993;33:1489–1491. http://dx.doi.org/10.1016/0031-9422(93)85117-A

Das B, Takhi M, Srinivas KVNS, Yadav JS. A lignan from needles of himalayan Taxus baccata. Phytochemistry. 1994;36:1031–1033. http://dx.doi.org/10.1016/S0031-9422(00)90485-0

Das B, Padma Rao S, Srinivas KVNS, Yadav JS. Lignans, biflavones and taxoids from Himalayan Taxus baccata. Phytochemistry. 1995;38(3):715–717. http://dx.doi.org/10.1016/0031-9422(94)00678-M

Erdemoglu N, Sener B, Ozcan Y, Ide S. Structural and spectroscopic characteristics of two new dibenzylbutane type lignans from Taxus baccata L. J Mol Struct. 2003;655:459–466. http://dx.doi.org/10.1016/S0022-2860(03)00359-4

Erdemoglu N, Sener B, Choudhary MI. Bioactivity of lignans from Taxus baccata. Z Naturforsch C. 2004;59c:494–498.

King FE, Jurd L, King TJ. Iso-taxiresinol (3’-demethylisolariciresinol) a new lignan extracted from the heartwood of the English yew, Taxus baccata. J Chem Soc. 1952;17–24. http://dx.doi.org/10.1039/JR9520000017

Mujumdar RB, Srinivasan R, Venkataraman K. Taxiresinol, a new lignan in the heartwood of Taxus baccata. Indian J Chem. 1972;10:677–680.

Yin J, Tezuka Y, Subehan SL, Nobukawa M, Nobukawa T, Kadota S. In vivo anti-osteoporotic activity of isotaxiresinol, a lignan from wood of Taxus yunnanensis. Phytomedicine. 2006;13:37–42. http://dx.doi.org/10.1016/j.phymed.2004.06.017

Shen YC, Chen CY, Chen YJ, Kuo YH, Chien CT, Lin YM. Bioactive lignans and taxoids from the roots of formosan Taxus mairei. Chin Pharm J. 1997;49:285–296.

Banskota AH, Usia T, Tezuka Y, Kouda K, Nguyen NT, Kadota S. Three new C-14 oxygenated taxanes from the wood of Taxus yunnanensis. J Nat Prod. 2002;65(11): 1700–1702. http://dx.doi.org/10.1021/np020235j

Chattopadhyay SK, Kumar TRS, Maulik PR, Srivastava S, Garg A, Sharon A, et al. Absolute configuration and anticancer activity of taxiresinol and related lignans of Taxus wallichiana. Bioorg Med Chem. 2003;11:4945–4948. http://dx.doi.org/10.1016/j.bmc.2003.09.010

Tsukamoto H, Hisada A, Nishibe S. Lignans from bark of the Olea plants. Chem Pharm Bull. 1984;32:2730–2735. http://dx.doi.org/10.1248/cpb.32.2730

Ishida J, Wang HK, Oyama M, Cosentino ML, Hu CQ, Lee KH. Anti-AIDS agents. 46.1 anti-HIV activity of harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives. J Nat Prod. 2001;64:958–960. http://dx.doi.org/10.1021/np0101189

Schmitt J, Petersen M. Pinoresinol and matairesinol accumulation in a Forsythia ×intermedia cell suspension culture. Plant Cell Tissue Organ Cult. 2002;68:91–98. http://dx.doi.org/10.1023/A:1012909131741

Gupta PK, Durzan DJ. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep. 1985;4:177–179. http://dx.doi.org/10.1007/BF00269282

Lloyd G, McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc. 1980;30:420–427.

Gamborg OL, Miller RA, Ojima O. Nutrient requirements of suspension cultures of soybean root cell. Exp Cell Res. 1968;50:151–158. http://dx.doi.org/10.1016/0014-4827(68)90403-5

Rangaswamy NS. Experimental studies on female reproductive structures of Citrus microcarpa Bunge. Phytomorphology. 1961;11:109–127.

Tóth S, Scott P, Sorvari S, Toldi O. Effective and reproducible protocols for in vitro culturing and plant regeneration of the physiological model plant Ramonda myconi (L.) Rchb. Plant Sci. 2004;166:1027–1034. http://dx.doi.org/10.1016/j.plantsci.2003.12.020

Theodoridis G, de Jong CF, Laskaris G, Verpoorte R. Application of SPE for the HPLC analysis of taxanes from Taxus cell cultures. Chromatographia. 1998;47:25–34. http://dx.doi.org/10.1007/BF02466782

Okuyama E, Suzumurak K, Kamazaki M. Pharmacologicaly active compounds of Todopon Puok (Fragraea racemosa), a medical plant from Borneo. Chem Pharm Bull. 1995;43:2200–2204. http://dx.doi.org/10.1248/cpb.43.2200

Tsukamoto H, Hisada S, Nishibe S. Lignans from the bark of Olea plants. Chem Pharm Bull. 1984;32:2730–2735. http://dx.doi.org/10.1248/cpb.32.2730

Mitsuhashi S, Kishimoto T, Uraki Y, Okamoto T, Ubukata M. Low molecular weight lignin suppresses activation of NF-κB and HIV-1 promoter. Bioorg Med Chem. 2008;16:2645–2650. http://dx.doi.org/10.1016/j.bmc.2007.11.041

Hyo WJ, Ramalingam M, Jong GL, Seung HL, Young SK, Yong-Ki P. Pinoresinol from the fruits of Forsythia koreana inhibits inflammatory responses in LPS-activated microglia. Neurosci Lett. 2010;480:215–220. http://dx.doi.org/10.1016/j.neulet.2010.06.043

Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P. (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting a-glucosidase. Bioorg Med Chem Lett. 1012;22:5215–5217. http://dx.doi.org/10.1016/j.bmcl.2012.06.068

Wang Y, Ma L, Pang C, Huang M, Huang, Z, Gu L. Synergetic inhibition of genistein and d-glucose on α-glucosidase. Bioorg Med Chem Lett. 2004;14:2947–2950. http://dx.doi.org/10.1016/j.bmcl.2004.03.035

Liu Z, Saarinen NM, Thompson LU. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr. 2006;136:906–912.

Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, de Vol EB, et al. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis. 2008;29(1):139–146. http://dx.doi.org/10.1093/carcin/bgm255

Wang H, Li MC, Yang J, Yang D, Su YF, Fan GW, et al. Estrogenic properties of six compounds derived from Eucommia ulmoides Oliv. and their differing biological activity through estrogen receptors alpha and beta. Food Chem. 2011;129:408–416. http://dx.doi.org/10.1016/j.foodchem.2011.04.092

Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, et al. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science. 2002;295(5554):505–508. http://dx.doi.org/10.1126/science.1065250

Kawamura F, Kikuchi Y, Ohira T, Yastagai M. Phenolic constituents of Taxus cuspidata. I: lignans from the roots. J Wood Sci. 2000;46:167–171. http://dx.doi.org/10.1007/BF00777366

Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B. Bioactive phenolic substances in industrially important tree species. Part 1: knots and stemwood of different spruce species. Holzforschung. 2005;58(4):335–344. http://dx.doi.org/10.1515/HF.2004.052

Willför S, Nisula L, Hemming J, Reunanen M, Holmbom B. Bioactive phenolic substances in industrially important tree species. Part 2: knots and stemwood of fir species. Holzforschung. 2005;58(6):650–659. http://dx.doi.org/10.1515/HF.2004.119

Milder IE, Arts IC, van de Putte B, Venema DP, Hollman PC. Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr. 2005;93(3):393–402. http://dx.doi.org/10.1079/BJN20051371

Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, et al. In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem. 2001;49:3178–3186. http://dx.doi.org/10.1021/jf010038a

Apendino G, Cravotto G, Enriu R, Gariboldi P, Barboni L, Torregiani E, et al. Taxoids from the roots of Taxus ×media cv. Hicksii. J Nat Prod. 1994;57:607–613.

Katayama T, Masaoka T, Yamada H. Biosynthesis and stereochemistry of lignans in Zanthoxylum ailanthoides. I. (+)-Lariciresinol formation by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi. 1997;43:580–588.

Xia ZQ, Costa MA, Pelissier HC, Davin LB, Lewis NG. Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. Implications for human health protection. J Biol Chem. 2001;276:12614–12623. http://dx.doi.org/10.1074/jbc.M008622200




DOI: https://doi.org/10.5586/asbp.2014.038

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society