Investigations of the capacity and strength of seed germination in Allium victorialis L.

Krystyna Winiarczyk, Katarzyna Skrzypczak, Jolanta Jaroszuk-Sciseł, Jan Bocianowski


The aim of the study was to examine the strength and energy of seed germination in Allium victorialis. Despite the normal structure of seeds containing a viable embryo and compliance with all International Seed Testing Association recommendations, no germination in A. victorialis was observed. Additionally, the scarification and stratification treatments applied did not improve the dynamics of germination of A. victorialis seeds. Microbiological analyses of soil sampled from natural localities of the plant revealed a typical composition of bacteria and fungi. The high number of fungi [4.5 log10CFU (colony forming units) of fungi × g−1 dry mass of soil] and various groups of bacteria (about 7.0 log10CFU of bacteria × g−1 dry mass of soil) were detected in the root-free-soil around garlic roots. In the interior of A. victorialis roots, the number of microorganisms decreased 1000 to 10 000 times but all the tested microbial groups, especially copiotrophic bacteria and fungi (1.6 and 2.2, respectively, log10CFU × g−1 dry mass of roots) were detected.

Changes in such parameters as dehydrogenase activity, pH values, and the total organic C (TOC) content in the particular parts of the rhizosphere and in comparison to the rhizosphere with root-free-soil were observed. The dehydrogenase activity and TOC content were highly positively correlated with the total number of CFU of the microorganisms.


Allium; victory onion; phylogenetic analysis; ISTA; seed; embryo; tetrazolium test

Full Text:



Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA. Seed coats: structure, development, composition, and biotechnology. Vitro Cell Dev Biol Plant. 2005;41(5):620–644.

Mallek SB, Prather TS, Stapleton JJ. Interaction effects of Allium spp. residues, concentrations and soil temperature on seed germination of four weedy plant species. Appl Soil Ecol. 2007;37(3):233–239.

Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta. 2000;210(2):215–221.

Mathew SJ, Rembold M, Leptin M. Role for Traf4 in polarizing adherens junctions as a prerequisite for efficient cell shape changes. Mol Cell Biol. 2011;31(24):4978–4993.

Bewley JD. Seed germination and dormancy. Plant Cell. 1997;9(7):1055–1066.

Fritsch RM, Friesen N. Evolution, domestication, and taxonomy. In: Rabinowitch HD, Currah L, editors. Allium crop science: recent advances. Wallingford: CABI; 2002. p. 5–26.

Hanelt P. Alliaceae. In: Hanelt P, Büttner R, Mansfeld R, editors. Mansfeld’s encyclopedia of agricultural and horticultural crops (except ornamentals). Vienna: Springer; 2001. p. 2250–2269.

Mirek Z, Piękoś-Mirkowa H, Zając A, Zając M, editors. Flowering plants and pteridophytes of Poland – a checklist. Cracow: W. Szafer Institute of Botany, Polish Academy of Sciences; 2002. (Biodiversity of Poland; vol 1).

Bilz M, Kell SP, Maxted N, Lansdown RV. European red list of vascular plants. Luxembourg: Publications Office of the European Union; 2011.

Kawano S, Nagai Y. Life-history monographs of Japanese plants. 4: Allium victorialis L. ssp. platyphyllum (Makino) Hulten (Alliaceae) Syn. Allium victorialis L. var. platyphyllum Makino; A. latissimum Prokh. Plant Species Biol. 2005;20(3):219–225.

Rätsch C. The encyclopedia of psychoactive plants: ethnopharmacology and its applications. Rochester, NY: Inner Traditions/Bear; 2012.

Alef K. Dehydrogenase activity. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. London: Academic Press; 1995. p. 228–231.

Hirschegger P, Jakse J, Trontelj P, Bohanec B. Origins of Allium ampeloprasum horticultural groups and a molecular phylogeny of the section Allium (Allium: Alliaceae). Mol Phylogenet Evol. 2010;54(2):488–497.

International Seed Testing Association. International rules for seed testing. Bassersdorf: International Seed Testing Association; 2010.

Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, et al. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil. 2010;337(1–2):481–496.

Lityński T, Jurkowska H, Gorlach E. Analiza chemiczno-rolnicza: przewodnik metodyczny do analizy gleby i nawozów. Warsaw: Polish Scientific Publishers PWN; 1976.

King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301–307.

Martin JP. Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci. 1950;69(3):215–232.

Tabatabai MA. Soil enzymes. In: Page AL, Keeney DR, editors. Methods of soil analysis. Part 2. Chemical and microbiological properties. Madison, WI: American Society of Agronomy, Soil Science Society of America; 1982. p. 903–948.

Thalmann A. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsch Forsch. 1968;21:249–258.

Armitage P, Berry G, Matthews JNS. Statistical methods in medical research. Oxford: Blackwell; 1987.

Sardi P, Saracchi M, Quaroni S, Petrolini B, Borgonovi GE, Merli S. Isolation of endophytic Streptomyces strains from surface-sterilized roots. Appl Env Microbiol. 1992;58(8):2691–2693.

Azaizeh HA, Marschner H, Römheld V, Wittenmayer L. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza. 1995;5(5):321–327.

Schroth MN, Hildebrand DC, Starr MP. Phytopathogenic members of the genus Pseudomonas. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The Prokaryotes. Berlin: Springer Berlin Heidelberg; 1981. p. 701–718.

Leifert C, Murphy K, Lumsden P. Mineral and carbohydrate nutrition of plant cell and tissue cultures. Crit Rev Plant Sci. 1995;14(2):83–109.

Kuzyakov Y. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci. 2002;165(4):382–396.<382::AID-JPLN382>3.0.CO;2-#

Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil. 2009;321(1–2):341–361.

Fatawi ZD, Wiyono H, Widono S. Analysis of rhizosphere bacterial community in suppressive and conducive soils to basal rot of garlic based on PCR-RISA. Biomirror. 2012;3(2):9–12.

Avila Miranda ME, Herrera Estrella A, Peña Cabriales JJ. Colonization of the rhizosphere, rhizoplane and endorhiza of garlic (Allium sativum L.) by strains of Trichoderma harzianum and their capacity to control allium white-rot under field conditions. Soil Biol Biochem. 2006;38(7):1823–1830.

Rajeshkumar S, Nisha MC. Diversity of arbuscular mycorrhizal fungi associated with some garlic varieties in Nilgiri District. Herb Tech Ind. 2012;3:1–3.

Thangavelu M, Tamilselvi V. Occurrence and morphology of endorhizal fungi in crop species. Trop Subtrop Agroecosyst. 2010;12(3):593–604.

Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314–330.

Krzymińska A, Gawłowska M, Wolko B, Bocianowski J. Genetic diversity of ornamental Allium species and cultivars assessed with isozymes. J Appl Genet. 2008;49(3):213–220.

Kamenetsky R, Rabinowitch HD. Floral development in bolting garlic. Sex Plant Reprod. 2001;13(4):235–241.