The wind and fire disturbance in Central European mountain spruce forests: the regeneration after four years

Monika Budzáková, Dobromil Galvánek, Pavol Littera, Jozef Šibík

Abstract


A strong windstorm in November 2004 resulted in a huge blown-down spruce forest area in the southern part of the Tatra National Park in the Western Carpathians in Slovakia, Central Europe. The aim of this work is to study the vegetation composition of spruce forest at differently managed sites four years after this disturbance. Four study areas were selected for this purpose: (i) an area where the fallen trees were extracted and new seedlings were planted; (ii) an area, which was hit by a forest fire after the extraction; (iii) an area where no active management was applied; (iv) a reference forest unaffected by such disturbance. A total of 100 plots were selected, 25 of each area type. The result of DCA and CCA analyses consistently indicated that after this short period the non-extracted and extracted areas are currently most similar to the reference forest area, while the fire affected area differed. A one-way ANOVA comparing species cover for the different plot sizes indicated some significant differences between the extracted and non-extracted plots. The abundance of certain species commonly occurring in spruce forests, such as Dyopteris carthusiana agg., Vaccinium myrtillus and Avenella flexuosa, correlated weli with the non-extracted plots, compared to the extracted plots. Coverage of these species was lowest on burned plots. The lowest Shannon-Wiener’s diversity values were recorded in burned plots. This was most likely a consequence of mono-dominant competitive species spread, (mainly Chamerion angustifolium) which profited from the altered ecological conditions following the fire. Although some differences were also registered in the Shannon-Wiener diversity index between the remaining research plots, however these were not statistically significant. The most important results of our investigations include the extensive influence of fire disturbance on vegetation. Study revealed that the wind-disturbed area is able to regenerate sufficiently without human intervention.

Keywords


disturbance; diversity; ordination; regeneration; spruce forest

Full Text:

PDF

References


Ulanova NG. The effects of windthrow on forests at different spatial scales: a review. For Ecol Manage. 2000;135(1–3):155–167. http://dx.doi.org/10.1016/S0378-1127(00)00307-8

Dale VH, Joyce LA, McNulty S, Neilson RP. The interplay between climate change, forests, and disturbances. Sci Total Environ. 2000;262(3):201–204. http://dx.doi.org/10.1016/S0048-9697(00)00522-2

Bouget C, Duelli P. The effects of windthrow on forest insect communities: a literature review. Biol Conserv. 2004;118(3):281–299. http://dx.doi.org/10.1016/j.biocon.2003.09.009

White PS, Jentsch A. The search for generality in studies of disturbance and ecosystems dynamics. Prog Bot. 2001;62:399–449.

Frelich LE. Forest dynamics and disturbance regimes. Cambridge: Cambridge University Press; 2002.

Chao L. Simulating forest fire regimes in the foothills of the Canadian Rocky Mountains. In: Perera AH, Buse LJ, Weber MG, editors. Emulating natural forest landscape disturbances: concepts and aplications. New York NY: Columbia University Press; 2004. p. 98–111.

Wohlgemuth T, Bürgi M, Scheidegger C, Schütz M. Dominance reduction of species through disturbance – a proposed management principle for central European forests. For Ecol Manage. 2002;166(1–3):1–15. http://dx.doi.org/10.1016/S0378-1127(01)00662-4

Jonsson BG. Treefall disturbance – a factor structuring vegetation in boreal spruce forests. In: Krahulec F, Agnew ADQ, Agnew S, Willems JH, editors. Spatial processes in plant communities – proceedings of the workshop held in Liblice, 18–22 September 1989. Prague: Academia; 1989. p. 89–98.

McClain ME, Bilby RE, Triska FJ. Nutrient cycles and responses to disturbance. In: Naiman RJ, Bilby RE, editors. River ecology and management: lessons from the Pacific Coastal ecoregion. New York NY: Springer; 1998. p. 347–372.

Fox JF. Intermediate levels of soil disturbance maximize alpine plant diversity. Nature. 1981;293(5833):564–565. http://dx.doi.org/10.1038/293564a0

Grime JP. Competitive exclusion in herbaceous vegetation. Nature. 1973;242(5396):344–347. http://dx.doi.org/10.1038/242344a0

Huston MA. A general hypothesis of species diversity. Am Nat. 1979;113(1):81. http://dx.doi.org/10.1086/283366

Svensson JR, Lindegarth M, Jonsson PR, Pavia H. Disturbance-diversity models: what do they really predict and how are they tested? Proc Biol Sci B. 2012;279(1736):2163–2170. http://dx.doi.org/10.1098/rspb.2011.2620

Begon M, Harper JR, Townsend CR. Ecology: individuals, populations and communities. 3rd ed. Oxford: Blackwell; 1996.

Fischer A. Long term vegetation development in Bavarian Mountain Forest ecosystems following natural destruction. Plant Ecol. 1992;103:93–104.

Zielonka T, Holeksa J, Fleischer P, Kapusta P. A tree-ring reconstruction of wind disturbances in a forest of the Slovakian Tatra Mountains, Western Carpathians. J Veg Sci. 2010;21(1):31–42. http://dx.doi.org/10.1111/j.1654-1103.2009.01121.x

Motyčka V. Vítr v Tatrách. Fakty a rozhovory o Vysokých Tatrách. Jaké byly, jsou a budou. Ružomberok: EPOS, s.r.o.; 2005.

Mičuda R, Šimonovičová A, Ďuriš M, Šimkovic I, Lancuch P, Hanajík P, et al. Soil-ecological characteristics of localities and evaluation of some soil properties in the High Tatra mountains after the windthrow. Phytopedon. 2005;4:12–18.

Faško P, Šťastný P. Priemerné ročné úhrny zrážok. Mapa 1 : 2000000. Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR, SAŽP; 2002.

Šťastný P, Nieplová E, Melo M. Priemerná ročná teplota vzduchu. Mapa 1 : 2000000. Atlas krajiny Slovenskej republiky. Bratislava: MŽP SR, SAŽP; 2002.

Michalko J, editor. Geobotanická mapa ČSSR. Bratislava: Veda; 1986.

Houdek I, Bohuš I. Osudy Tatier. Bratislava: Šport; 1976.

Mičuda R, Blahút L. Vplyv požiaru na biomasu bylinnej vrstvy na území Vysokých Tatier. Phytopedon. 2007;6:6–10.

Braun-Blanquet J. Pflanzensoziologie, Gründzüge der Vegetationskunde. 3rd ed. Wien: Springer; 1964.

Westhoff V, van der Maarel E. The Braun-Blanquet approach. In: Whittaker RH, editor. Classification of plant communities. Hague: Junk; 1978. p. 287–399.

Jarolímek I, Šibík J, editors. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Bratislava: Veda; 2008.

Marhold K, Hindák F, editors. Zoznam nižších a vyšších rastlín Slovenska. Bratislava: Veda; 1998.

Ter Braak CJF, Šmilauer P. CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (version 4.5). Wageningen: Biometris; 2002.

Lepš J, Šmilauer P. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press; 2003.

Ellenberg H. Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot. 1992;18:9–166.

Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54(2):427. http://dx.doi.org/10.2307/1934352

Tichý L, Holt J. JUICE, program for management, analysis and classification of ecological data. First part of the program manual. Brno: Vegetation Science Group, Masaryk University; 2006.

Tichý L. JUICE, software for vegetation classification. J Veg Sci. 2002;13(3):451–453. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02069.x

Ilisson T, Köster K, Vodde F, Jõgiste K. Regeneration development 4–5 years after a storm in Norway spruce dominated forests, Estonia. For Ecol Manage. 2007;250(1–2):17–24. http://dx.doi.org/10.1016/j.foreco.2007.03.022

Mori A, Mizumachi E, Osono T, Doi Y. Substrate-associated seedling recruitment and establishment of major conifer species in an old-growth subalpine forest in central Japan. For Ecol Manage. 2004;196(2–3):287–297. http://dx.doi.org/10.1016/j.foreco.2004.03.027

Jonášová M, Matějková I. Natural regeneration and vegetation changes in wet spruce forests after natural and artificial disturbances. Can J For Res. 2007;37(10):1907–1914. http://dx.doi.org/10.1139/X07-062

Svoboda M, Pouska V. Structure of a Central-European mountain spruce old-growth forest with respect to historical development. For Ecol Manage. 2008;255(7):2177–2188. http://dx.doi.org/10.1016/j.foreco.2007.12.031

Holeksa J, Saniga M, Szwagrzyk J, Dziedzic T, Ferenc S, Wodka M. Altitudinal variability of stand structure and regeneration in the subalpine spruce forests of the Pol’ana biosphere reserve, Central Slovakia. Eur J For Res. 2006;126(2):303–313. http://dx.doi.org/10.1007/s10342-006-0149-z

Rusek J, Brůhová J. Impact of bark beetle outbreak on epigeic communities of Collembola (Insecta: Entognatha) in climax spruce forests in the Šumava National Park, Czech Republic. In: Contributions to soil zoology in Central Europe II: proceedings of the 8th Central European workshop on soil zoology, České Budějovice, Czech Republic, April 20–22, 2005. České Budějovice: Institute of Soil Biology, Biology Centre, Academy of Sciences of the Czech Republic; 2007. p. 121–126.

Bače R, Janda P, Svoboda M. Vliv mikrostanoviště a horního stromového patra na stav přirozené obnovy v horském smrkovém lese na Trojmezní. Silva Gabreta. 2009;15:67–84.

Gömöry D, Dovčiak M, Gömöryová E, Hrivnák R, Janišová M, Ujházy K. Demekologické, synekologické a genetické aspekty kolonizácie nelesných plôch lesnými drevinami. Zvolen: Lesnícka fakulta Technickej Univerzity; 2006.

Šoltés R, Školek J, Homolová Z, Kyselová Z. Sekundárna sukcesia na kalamitných plochách vo Vysokých Tatrách v rokoch 2005–2007. In: Fleischer P, Matejka F, editors. Windfall research in the High Tatras Mts. Proceedings of the conference. Tatranská Lomnica: Geophysical Institute of the Slovak Academy of Sciences; 2007.

Holeksa J, Zywiec M. Spatial pattern of a pioneer tree seedling bank in old-growth European subalpine spruce forest. Ekológia. 2005;24:263–276.

Lonsdale D, Pautasso M, Holdenrieder O. Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res. 2008;127(1):1–22. http://dx.doi.org/10.1007/s10342-007-0182-6

Jonášová M, Prach K. Central-European mountain spruce [Picea abies (L.) Karst.] forests: regeneration of tree species after a bark beetle outbreak. Ecol Eng. 2004;23(1):15–27. http://dx.doi.org/10.1016/j.ecoleng.2004.06.010

Lässig R, Močalov SA. Frequency and characteristics of severe storms in the Urals and their influence on the development, structure and management of the boreal forests. For Ecol Manage. 2000;135(1–3):179–194. http://dx.doi.org/10.1016/S0378-1127(00)00309-1

Mayer P, Abs C, Fischer A. Colonisation by vascular plants after soil disturbance in the Bavarian Forest – key factors and relevance for forest dynamics. For Ecol Manage. 2004;188(1–3):279–289. http://dx.doi.org/10.1016/j.foreco.2003.07.027

Ricard JP, Messier C. Abundance, growth and allometry of red raspberry (Rubus idaeus L.) along a natural light gradient in a northern hardwood forest. For Ecol Manage. 1996;81(1–3):153–160. http://dx.doi.org/10.1016/0378-1127(95)03643-1

Marozas V, Racinskas J, Bartkevicius E. Dynamics of ground vegetation after surface fires in hemiboreal Pinus sylvestris forests. For Ecol Manage. 2007;250(1–2):47–55. http://dx.doi.org/10.1016/j.foreco.2007.03.008

Hannerz M, Hånell B. Effects on the flora in Norway spruce forests following clearcutting and shelterwood cutting. For Ecol Manage. 1997;90(1):29–49. http://dx.doi.org/10.1016/S0378-1127(96)03858-3

Driscoll K., Arocena J., Massicotte H. Post-fire soil nitrogen content and vegetation composition in Sub-Boreal spruce forests of British Columbia’s central interior, Canada. For Ecol Manage. 1999;121(3):227–237. http://dx.doi.org/10.1016/S0378-1127(99)00003-1

Widenfalk O, Weslien J. Plant species richness in managed boreal forests – effects of stand succession and thinning. For Ecol Manage. 2009;257(5):1386–1394. http://dx.doi.org/10.1016/j.foreco.2008.12.010