The growth and saponin production of Platycodon grandiflorum (Jacq.) A. DC. (Chinese bellflower) hairy roots cultures maintained in shake flasks and mist bioreactor

Natalia Urbańska, Joanna Giebułtowicz, Olga Olszowska, Wojciech J. Szypuła

Abstract


The growth and saponin accumulation were measured in two lines of transgenic hairy roots of Platycodon grandiflorum, Pl 6 and Pl 17, cultured for 8 weeks in 250-ml shake flasks containing 50 ml of hormone-free woody plant medium supplemented with 40 g/l sucrose and in the Pl 17 line cultured for 12 weeks in a 5-l mist bioreactor containing 1.5 l of the same medium. With both methods, the growth of transgenic hairy roots was assessed as both fresh and dry weight and the biomass growth was correlated with the conductivity and sucrose uptake. The accumulation of saponins was measured and compared with that in roots derived from the field cultivation. The saponin concentrations were significantly higher in the two hairy root lines cultured in shake flasks [6.92 g/100 g d.w. (g%) and 5.82 g% in Pl 6 and Pl 17, respectively] and the line cultured in the bioreactor (5.93 g%) than in the roots derived from the field cultivation (4.02 g%). The results suggest that cultures of P. grandiflorum hairy roots may be a valuable source for obtaining saponins.

Keywords


Platycodon grandiflorum; Chinese bellflower; hairy roots; saponins; mist bioreactor

Full Text:

PDF

References


Kim Y, Wyslouzil BE, Weathers PJ. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant. 2002;38(1):1–10. http://dx.doi.org/10.1079/IVP2001243

Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol. 2006;9(3):341–346. http://dx.doi.org/10.1016/j.pbi.2006.03.008

Liu C. Bioreactor: a power tool for pharmaceutical production from plant hairy root cultures. J Biotech. 2008;136:S496. http://dx.doi.org/10.1016/j.jbiotec.2008.07.1162

Ahn KS, Hahn BS, Kwack KB, Lee EB, Kim YS. Platycodin D-induced apoptosis through nuclear factor-κB activation in immortalized keratinocytes. Eur J Pharmacol. 2006;537(1–3):1–11. http://dx.doi.org/10.1016/j.ejphar.2006.03.012

Zhang L, Liu ZH, Tian JK. Cytotoxic triterpenoid saponins from the roots of Platycodon grandiflorum. Molecules. 2007;12(4):832–841. http://dx.doi.org/10.3390/12040832

Kim J Y, Park KW, Moon KD, Lee MK, Choi J, Yee ST, et al. Induction of apoptosis in HT-29 colon cancer cells by crude saponin from Platycodi radix. Food Chem Toxic. 2008;46(12):3753–3758. http://dx.doi.org/http://dx.doi.org/10.1016/j.fct.2008.09.067

Lee KJ, Hwang SJ, Choi JH, Jeong HG. Saponins derived from the roots of Platycodon grandiflorum inhibit HT-1080 cell invasion and MMPs activities: Regulation of NF-κB activation via ROS signal pathway. Cancer Lett. 2008;268(2):233–243. http://dx.doi.org/10.1016/j.canlet.2008.03.058

Kim YP, Lee EB, Kim SY, Li D, Ban HS, Lim SS, et al. Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta Med. 2001;67(4):362–364. http://dx.doi.org/10.1055/s-2001-14317

Kim JY, Hwang YP, Kim DH, Han EH, Chung YC, Roh SH, et al. Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation. Biosci Biotechnol Biochem. 2006;70(4):858–864. http://dx.doi.org/10.1271/bbb.70.858

Lee K. Protective effect of saponins derived from roots of Platycodon grandiflorum on tert-butyl hydroperoxide-induced oxidative hepatotoxicity. Toxicol Lett. 2004;147(3):271–282. http://dx.doi.org/10.1016/j.toxlet.2003.12.002

Zhao HL, Cho KH, Ha YW, Jeong TS, Lee WS, Kim YS. Cholesterol-lowering effect of platycodin D in hypercholesterolemic ICR mice. Eur J Pharmacol. 2006;537(1–3):166–173. http://dx.doi.org/10.1016/j.ejphar.2006.03.032

Choi SS, Han EJ, Lee TH, Han KJ, Lee HK, Suh HW. Antinociceptive profiles of platycodin D in the mouse. Am J Chin Med. 2004;32(02):257–268. http://dx.doi.org/10.1142/S0192415X04001916

Xie Y, Pan H, Sun H, Li D. A promising balanced Th1 and Th2 directing immunological adjuvant, saponins from the root of Platycodon grandiflorum. Vaccine. 2008;26(31):3937–3945. http://dx.doi.org/10.1016/j.vaccine.2008.01.061

Xie Y, Sun HX, Li D. Platycodin D is a potent adjuvant of specific cellular and humoral immune responses against recombinant hepatitis B antigen. Vaccine. 2009;27(5):757–764. http://dx.doi.org/10.1016/j.vaccine.2008.11.029

Xie Y, Ye YP, Sun HX, Li D. Contribution of the glycidic moieties to the haemolytic and adjuvant activity of platycodigenin-type saponins from the root of Platycodon grandiflorum. Vaccine. 2008;26(27–28):3452–3460. http://dx.doi.org/10.1016/j.vaccine.2008.04.023

Jeong HM, Han EH, Jin YH, Hwang YP, Kim HG, Park BH, et al. Saponins from the roots of Platycodon grandiflorum stimulate osteoblast differentiation via p38 MAPK- and ERK-dependent RUNX2 activation. Food Chem Toxic. 2010;48(12):3362–3368. http://dx.doi.org/10.1016/j.fct.2010.09.005

Urbańska N, Nartowska J, Skorupska A, Ruszkowski D, Giebułtowicz J, Olszowska O. Determination and haemolytic activity of saponins in hairy root culture of Platycodon grandiforum A. DC. Herba Pol. 2009;55(3):103–108.

Pharmacopoeia Commission of PRC. Pharmacopoeia of the People’s Republic of China (1988 English edition). Beijing: People’s Medical Publishing House; 1988.

Ha IJ, Kang M, Na YC, Park Y, Kim YS. Preparative separation of minor saponins from Platycodi radix by high-speed counter-current chromatography. J Sep Sci. 2011;34(19):2559–2565. http://dx.doi.org/10.1002/jssc.201100326

Zhan Q, Zhang F, Sun L, Wu Z, Chen W. Two new oleanane-type triterpenoids from Platycodi radix and anti-proliferative activity in HSC-T6 cells. Molecules. 2012;17(12):14899–14907. http://dx.doi.org/10.3390/molecules171214899

WHO. WHO monographs on selected medicinal plants. Geneva: WHO; 1999. (vol 1).

Yoo DS, Choi YH, Cha MR, Lee BH, Kim SJ, Yon GH, et al. HPLC-ELSD analysis of 18 platycosides from balloon flower roots (Platycodi radix) sourced from various regions in Korea and geographical clustering of the cultivation areas. Food Chem. 2011;129(2):645–651. http://dx.doi.org/10.1016/j.foodchem.2011.04.106

Kim YK, Kim JK, Kim YB, Lee S, Kim SU, Park SU. Enhanced accumulation of phytosterol and triterpene in hairy root cultures of Platycodon grandiflorum by overexpression of Panax ginseng 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Agric Food Chem. 2013;61(8):1928–1934. http://dx.doi.org/10.1021/jf304911t

Tada H, Shimomura K, Ishimaru K. Polyacetylenes in Platycodon grandiflorum hairy root and Campanulaceous plants. J Plant Physiol. 1995;145(1–2):7–10. http://dx.doi.org/10.1016/S0176-1617(11)81838-9

Lee JY, Yoon JW, Kim CT, Lim ST. Antioxidant activity of phenylpropanoid esters isolated and identified from Platycodon grandiflorum A. DC. Phytochemistry. 2004;65(22):3033–3039. http://dx.doi.org/10.1016/j.phytochem.2004.08.030

Fu WW, Dou DQ, Shimizu N, Takeda T, Pei YH, Chen YJ. Studies on the chemical constituents from the roots of Platycodon grandiflorum. J Nat Med. 2006;60(1):68–72. http://dx.doi.org/10.1007/s11418-005-0008-0

Liu W, Liu H, Han M. Polysaccharides from Platycodon grandiflorum. Chem Nat Compd. 2013;48(6):927–929. http://dx.doi.org/10.1007/s10600-013-0430-6

Xu Y, Dong Q, Qiu H, Cong R, Ding K. Structural characterization of an arabinogalactan from Platycodon grandiflorum roots and antiangiogenic activity of its sulfated derivative. Biomacromolecules. 2010;11(10):2558–2566. http://dx.doi.org/10.1021/bm100402n

Xu Y, Dong Q, Qiu H, Ma CW, Ding K. A homogalacturonan from the radix of Platycodon grandiflorum and the anti-angiogenesis activity of poly-/oligogalacturonic acids derived therefrom. Carbohydr Res. 2011;346(13):1930–1936. http://dx.doi.org/10.1016/j.carres.2011.05.011

Reininger EA, Bauer R. Prostaglandin-H-synthase (PGHS)-1 and -2 microtiter assays for the testing of herbal drugs and in vitro inhibition of PGHS-isoenzyms by polyunsaturated fatty acids from Platycodi radix. Phytomedicine. 2006;13(3):164–169. http://dx.doi.org/10.1016/j.phymed.2005.03.006

Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, et al. Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 2010;118(2):278–282. http://dx.doi.org/10.1016/j.foodchem.2009.04.134

Inada A, Murata H, Somekawa M, Nakanishi T. Phytochemical studies of seeds of medicinal plants. II. A new dihydroflavonol glycoside and a new 3-methyl-1-butanol glycoside from seeds of Platycodon grandiflorum A. de Candolle. Chem Pharm Bull Tokyo. 1992;40(11):3081–3083.

Jang DS, Lee YM, Jeong IH, Kim JS. Constituents of the flowers of Platycodon grandiflorum with inhibitory activity on advanced glycation end products and rat lens aldose reductase in vitro. Arch Pharm Res. 2010;33(6):875–880. http://dx.doi.org/10.1007/s12272-010-0610-x

Micropropagation of Platycodon grandiflorum. In: Conference proceedings of the 53. conference of Polish Botanical Society: Polish nature in the natural heritage of Europe. 6–11 September 2004, Toruń, Bydgoszcz, Poland. Toruń: Polish Botanical Society; 2004. p. 120.

Kim SW, Liu JR. Somatic embryogenesis and plant regeneration in zygotic embryo cultures of balloon flower. Plant Cell Tissue Organ Cult. 1999;58(3):227–230. http://dx.doi.org/10.1023/A:1006338024745

Hosoki T, Mochida M. Mass propagation of balloon flower (Platycodon grandiflorum A. DC.) by repeated shoot-sectioning and separation of axillary shoot. Seibutsu Kankyo Chosetsu. 1995;33(3):213–216. http://dx.doi.org/10.2525/ecb1963.33.213

Iapichino G, Airò M. Micropropagation of Platycodon grandiflorus. Italus Hortus. 2009;16(2):128–131.

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x

Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50(1):151–158. http://dx.doi.org/10.1016/0014-4827(68)90403-5

Lloyd G, McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Propagators Soc. 1980;30:421–427.

Bernard F, Moghbel N, Hassannejad S. Treatment of licorice seeds with colchicine: changes in seedling DNA levels and anthocyanin and glycyrrhizic acid contents of derived callus cultures. Nat Prod Commun. 2012;7(11):1457–1460.

Wongwicha W, Tanaka H, Shoyama Y, Putalun W. Methyl jasmonate elicitation enhances glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures. Z Naturforsch C. 2011;66(7–8):423–428. http://dx.doi.org/10.5560/ZNC.2011.66c0423

Yin S, Zhang Y, Gao W, Wang J, Man S, Liu H. Effects of nitrogen source and phosphate concentration on biomass and metabolites accumulation in adventitious root culture of Glycyrrhiza uralensis Fisch. Acta Physiol Plant. 2014;36(4):915–921. http://dx.doi.org/10.1007/s11738-013-1470-z

Shabani L, Ehsanpour AA, Asghari G, Emami J. Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russ J Plant Physiol. 2009;56(5):621–626. http://dx.doi.org/10.1134/S1021443709050069

Lu HY, Liu JM, Zhang HC, Yin T, Gao SL. Ri-mediated transformation of Glycyrrhiza uralensis with a squalene synthase gene (GuSQS1) for production of glycyrrhizin. Plant Mol Biol Rep. 2008;26(1):1–11. http://dx.doi.org/10.1007/s11105-008-0018-7

Li YL, Yang Y, Fu CH, Yu LJ. Production of glycyrrhizin in cell suspension of Glycyrrhiza inflata Batalin cultured in bioreactor. Biotechnol Biotechnol Equip. 2012;26(5):3231–3235. http://dx.doi.org/10.5504/BBEQ.2012.0083

Wang J, Zhang J, Gao W, Wang Q, Yin S, Liu H, et al. Identification of triterpenoids and flavonoids, step-wise aeration treatment as well as antioxidant capacity of Glycyrrhiza uralensis Fisch. cell. Ind Crops Prod. 2013;49:675–681. http://dx.doi.org/10.1016/j.indcrop.2013.05.021

Yu KW, Gao WY, Son SH, Paek KY. Improvement of ginsenoside production by jasmonic acid and some other elicitors in hairy root culture of ginseng (Panax ginseng C.A. Meyer). In Vitro Cell Dev Biol Plant. 2000;36(5):424–428. http://dx.doi.org/10.1007/s11627-000-0077-4

Yu KW, Gao W, Hahn EJ, Paek KY. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J. 2002;11(2–3):211–215. http://dx.doi.org/10.1016/S1369-703X(02)00029-3

Huang C, Zhong JJ. Elicitation of ginsenoside biosynthesis in cell cultures of Panax ginseng by vanadate. Process Biochem. 2013;48(8):1227–1234. http://dx.doi.org/10.1016/j.procbio.2013.05.019

Akalezi CO, Liu S, Li QS, Yu JT, Zhong JJ. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochem. 1999;34(6–7):639–642. http://dx.doi.org/10.1016/S0032-9592(98)00132-0

Yu KW, Murthy HN, Hahn EJ, Paek KY. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J. 2005;23(1):53–56. http://dx.doi.org/10.1016/j.bej.2004.07.001

Wu J, Zhong J. Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotech. 1999;68(2–3):89–99. http://dx.doi.org/10.1016/S0168-1656(98)00195-3

Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A. Transfer of the Agrobacterium tumefaciens TI plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol. 1977;98(2):477–484. http://dx.doi.org/10.1099/00221287-98-2-477

Vervliet G, Holsters M, Teuchy H, van Montagu M, Schell J. Characterization of different plaque-forming and defective temperate phages in Agrobacterium strains. J Gen Virol. 1975;26(1):33–48. http://dx.doi.org/10.1099/0022-1317-26-1-33

Street HE, Henshaw GG. Introduction and employed in plant tissue culture. In: Willmer EN, editor. Cells and tissue culture. London: Academic Press; 1966. p. 459–532. (vol 3).

Suresh B, Rajasekaran T, Rao SR, Raghavarao KSMS, Ravishankar GA. Studies on osmolarity, conductivity and mass transfer for selection of a bioreactor for Tagetes patula L. hairy roots. Process Biochem. 2001;36(10):987–993. http://dx.doi.org/10.1016/S0032-9592(01)00132-7

Suresh B, Bais HP, Raghavarao KSMS, Ravishankar GA, Ghildyal NP. Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochem. 2005;40(5):1509–1515. http://dx.doi.org/10.1016/j.procbio.2003.10.017

Sykłowska-Baranek K, Pietrosiuk A, Gawron A, Kawiak A, Łojkowska E, Jeziorek M, et al. Enhanced production of antitumour naphthoquinones in transgenic hairy root lines of Lithospermum canescens. Plant Cell Tissue Organ Cult. 2012;108(2):213–219. http://dx.doi.org/10.1007/s11240-011-0032-6

Liu CZ, Wang YC, Zhao B, Guo C, Ouyang F, Ye HC, et al. Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cell Dev Biol Plant. 1999;35(3):271–274. http://dx.doi.org/10.1007/s11627-999-0091-0

Srivastava S, Srivastava AK. In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor. Appl Biochem Biotechnol. 2012;166(2):365–378. http://dx.doi.org/10.1007/s12010-011-9430-9

Weathers PJ, Wyslouzil BE, Wobbe KK, Kim YJ, Yigit E. The biological response of hairy roots to O2 levels in bioreactors. In Vitro Cell Dev Biol Plant. 1999;35(4):286–289. http://dx.doi.org/10.1007/s11627-999-0035-8

Kuźma Ł, Bruchajzer E, Wysokińska H. Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol. 2009;44(6–7):406–410. http://dx.doi.org/10.1016/j.enzmictec.2009.01.005

Kochan E, Królicka A, Chmiel A. Growth and ginsenoside production in Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiol Plant. 2012;34(4):1513–1518. http://dx.doi.org/10.1007/s11738-012-0949-3

Pawłowska B, Chmiel A. Scaling up the Paulownia tomentosa hairy roots culture. BioTechnologia. 2003;4(63):142–153.

Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM, Piñol MT. Growth and ginsenoside production in hairy root cultures of Panax ginseng using a novel bioreactor. Planta Med. 2003;69(4):344–349. http://dx.doi.org/10.1055/s-2003-38873

Jeong GT, Park DH. Comparative evaluation of modified bioreactors for enhancement of growth and secondary metabolite biosynthesis using Panax ginseng hairy roots. Biotechnol Bioprocess Eng. 2005;10(6):528–534. http://dx.doi.org/10.1007/BF02932289




DOI: https://doi.org/10.5586/asbp.2014.017

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society