Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L.

Peining Fu, Wenjie Wang, Lixia Hou, Xin Liu

Abstract


Hydrogen sulfide (H2S) is an important signaling molecule involved in several stress-resistance processes in plants, such as drought and heavy metal stresses. However, little is known about the roles of H2S in responses to chilling stress. In this paper, we demonstrated that chilling stress enhance the H2S levels, the H2S synthetase (L-/D-cysteine desulfhydrase, L/DCD) activities, and the expression of L/DCD gene in Vitis vinifera L. ‘F-242’. Furthermore, the seedlings were treated with sodium hydrosulfide (NaHS, a H2S donor) and hypotaurine (HT, a H2S scavenger) at 4°C to examine the effects of exogenous H2S on grape. The results revealed that the high activity of superoxide dismutase and enhanced expression of VvICE1 and VvCBF3 genes, but low level of super oxide anion radical, malondialdehyde content and cell membrane permeability were detected after addition of NaHS. In contrast, HT treatment displayed contrary effect under the chilling temperature. Taken together, these data suggested that H2S might be directly involved in the cold signal transduction pathway of grape.

Keywords


hydrogen sulfide; chilling stress; Vitis vinifera L.

Full Text:

PDF

References


Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16(13):1792–1798. http://dx.doi.org/10.1096/fj.02-0211hyp

Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants – from the field to the test tube and back. Plant Biol. 2007;9(5):582–588. http://dx.doi.org/10.1055/s-2007-965424

Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J. Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem. 2005;43(5):473–483. http://dx.doi.org/10.1016/j.plaphy.2005.04.001

Álvarez C, Calo L, Romero LC, García I, Gotor C. An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 2010;152(2):656–669. http://dx.doi.org/10.1104/pp.109.147975

Thomas M, Scott N. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet. 1993;86(8):985–990.

Wang Y, Li L, Cui W, Xu S, Shen W, Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil. 2012;351(1–2):107–119. http://dx.doi.org/10.1007/s11104-011-0936-2

Li ZG, Gong M, Xie H, Yang L, Li J. Hydrogen sulfide donor sodium hydrosulfide-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells and involvement of Ca2+ and calmodulin. Plant Sci. 2012;185–186:185–189. http://dx.doi.org/10.1016/j.plantsci.2011.10.006

Li L, Wang Y, Shen W. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. BioMetals. 2012;25(3):617–631. http://dx.doi.org/10.1007/s10534-012-9551-9

Wang BL, Shi L, Li YX, Zhang WH. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta. 2010;231(6):1301–1309. http://dx.doi.org/10.1007/s00425-010-1134-9

Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. J Integr Plant Biol. 2010;52(6):556–567. http://dx.doi.org/10.1111/j.1744-7909.2010.00946.x

Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, et al. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant. 2010;32(5):849–857. http://dx.doi.org/10.1007/s11738-010-0469-y

Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, et al. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem. 2013;62:41–46. http://dx.doi.org/10.1016/j.plaphy.2012.10.017

Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun. 2011;414(3):481–486. http://dx.doi.org/10.1016/j.bbrc.2011.09.090

Tan JF, Zhao HJ, Hong JP, Han YL, Li H, Zhao WC. Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress. World J Agric Sci. 2008;4:307–313.

Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol. 2008;50(12):1518–1529. http://dx.doi.org/10.1111/j.1744-7909.2008.00769.x

Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul. 2007;53(3):173–183. http://dx.doi.org/10.1007/s10725-007-9216-9

Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, et al. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 2011;189(2):415–427. http://dx.doi.org/10.1111/j.1469-8137.2010.03500.x

Zhao R, Sheng J, Lv S, Zheng Y, Zhang J, Yu M, et al. Nitric oxide participates in the regulation of LeCBF1 gene expression and improves cold tolerance in harvested tomato fruit. Postharvest Biol Technol. 2011;62(2):121–126. http://dx.doi.org/10.1016/j.postharvbio.2011.05.013

Mikkelsen MD, Thomashow MF. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis. Plant J. 2009;60(2):328–339. http://dx.doi.org/10.1111/j.1365-313X.2009.03957.x

Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57(1):781–803. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105444

Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol. 2004;135(3):1710–1717. http://dx.doi.org/10.1104/pp.104.043562

Chen L, Zhong H, Ren F, Guo QQ, Hu XP, Li XB. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress. Plant Cell Rep. 2011;30(4):463–471. http://dx.doi.org/10.1007/s00299-010-0952-3

Zhou M, Wu L, Liang J, Shen C, Lin J. Expression analysis and functional characterization of a novel cold-responsive gene CbCOR15a from Capsella bursa-pastoris. Mol Biol Rep. 2012;39(5):5169–5179. http://dx.doi.org/10.1007/s11033-011-1313-1

Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578–2595. http://dx.doi.org/10.1105/tpc.112.098640

Sangwan V, Foulds I, Singh J, Dhindsa RS. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 2001;27(1):1–12. http://dx.doi.org/10.1046/j.1365-313x.2001.01052.x

Ma YY, Zhang YL, Shao H, Lu J. Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agron Crop Sci. 2010;196(3):212–219. http://dx.doi.org/10.1111/j.1439-037X.2009.00405.x

Liu J, Hou L, Liu GH, Liu X, Wang XC. Hydrogen sulfide induced by nitric oxide mediates ethylene-induced stomatal closure of Arabidopsis thaliana. Chin Sci Bull. 2011;56(33):3547–3553. http://dx.doi.org/10.1007/s11434-011-4819-y

Zhao HJ, Zou Q. Protective effects of exogenous antioxidants and phenolic compounds on photosynthesis of wheat leaves under high irradiance and oxidative stress. Photosynthetica. 2002;40(4):523–527. http://dx.doi.org/10.1023/A:1024339716382

Ederli L, Pasqualini S, Batini P, Antonielli M. Photoinhibition and oxidative stress: effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants. J Plant Physiol. 1997;151(4):422–428. http://dx.doi.org/10.1016/S0176-1617(97)80006-5

Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207(4):604–611. http://dx.doi.org/10.1007/s004250050524

Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, et al. Profiling membrane lipids in plant stress responses. J Biol Chem. 2002;277(35):31994–32002. http://dx.doi.org/10.1074/jbc.M205375200

Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG. Responses of antioxidants to paraquat in pea leaves (relationships to resistance). Plant Physiol. 1997;113(1):249–257. http://dx.doi.org/10.1104/pp.113.1.249

Iandolino AB, da Silva FG, Lim H, Choi H, Williams LE, Cook DR. High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol Biol Rep. 2004;22(3):269–278. http://dx.doi.org/10.1007/BF02773137

Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol. 2011;51(1):169–187. http://dx.doi.org/10.1146/annurev-pharmtox-010510-100505

Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. 2012;92(2):791–896. http://dx.doi.org/10.1152/physrev.00017.2011

Riemenschneider A, Wegele R, Schmidt A, Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana. FEBS J. 2005;272(5):1291–1304. http://dx.doi.org/10.1111/j.1742-4658.2005.04567.x

Soutourina J, Blanquet S, Plateau P. Role of D-cysteine desulfhydrase in the adaptation of Escherichia coli to D-cysteine. J Biol Chem. 2001;276(44):40864–40872. http://dx.doi.org/10.1074/jbc.M102375200

Riemenschneider A. Isolation and characterization of cysteine-degrading and H2S-releasing proteins in higher plants [PhD thesis]. Hannover: Leibniz Universität Hannover; 2006.

Li ZG, Ding XJ, Du PF. Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol. 2013;170(8):741–747. http://dx.doi.org/10.1016/j.jplph.2012.12.018

Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell. 2007;19(4):1403–1414. http://dx.doi.org/10.1105/tpc.106.048397

Xiang DJ, Hu XY, Zhang Y, Yin KD. Over-expression of ICE1 gene in transgenic rice improves cold tolerance. Rice Sci. 2008;15(3):173–178. http://dx.doi.org/10.1016/S1672-6308(08)60039-6

Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 2000;124(4):1854–1865. http://dx.doi.org/10.1104/pp.124.4.1854

Chinnusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants. Physiol Plant. 2006;126(1):52–61. http://dx.doi.org/10.1111/j.1399-3054.2006.00596.x

Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 2003;33(4):751–763. http://dx.doi.org/10.1046/j.1365-313X.2003.01661.x

Zhao J, Ren W, Zhi D, Wang L, Xia G. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress. Plant Cell Rep. 2007;26(9):1521–1528. http://dx.doi.org/10.1007/s00299-007-0362-3

Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to drought and cold stress. Curr Opin Biotechnol. 1996;7(2):161–167. http://dx.doi.org/10.1016/S0958-1669(96)80007-3




DOI: https://doi.org/10.5586/asbp.2013.031

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society