Calculated characters of leaves are independent on environmental conditions in Salix herbacea (Salicaceae) and Betula nana (Betulaceae)

Katarzyna Marcysiak

Abstract


The goal of the study was to check if the shape-describing characters, calculated as ratios of the morphological measured traits are more stable, compared to the latter, and can be treated as independent on environmental conditions. The test was based on the example of leaves of Salix herbacea and Betula nana. The individuals of the two populations of S. herbacea from Tatra Mts. were divided into two groups: with bigger and smaller leaves. The two populations of B. nana came from different substrata: the first one, collected from the mire on the lower altitude, had bigger leaves, and the second, collected from the granite plateau and higher altitude, had smaller leaves.

For both species, the measured traits were generally more variable than the ratios calculated on their basis, as expressed by the variation coefficients. The results of Students' t-test analyses showed statistically significant differences between the two groups of S. herbacea and the two populations of B. nana with respect to almost all the measured characters, and no such differences for the calculated traits, reflecting the leaf shape.

As the differentiation of the leaf size was probably bound to the environmental factors, the lack of the dependence of the leaf shape on the leaf size could lead to a conclusion of independence of the leaf shape on the environment conditions.


Keywords


morphologic characters; synthetic characters; Salix herbacea; Betula nana

Full Text:

PDF

References


Levin DA. 50 years of plant speciation. In: Stuessy TF, Hörandl E, Mayer V, editors. Plant systematics: a half-century of progress (1950–2000) and future challenges. Vienna: International Association for Plant Taxonomy; 2001. p. 257–280.

Culham A. Molecular systematics: measuring and monitoring diversity. In: Leadlay E, Jury S, editors. Taxonomy and plant conservation. Cambridge: Cambridge University Press; 2006. p. 236–254.

Staszkiewicz J. Variability of selected shrub and tree species. Fragm Flor Geobot Polonica. 1997;2 suppl:313.

Max KN, Mouchaty SK, Schwaegerle KE. Allozyme and morphological variation in two subspecies of Dryas octopetala (Rosaceae) in Alaska. Am J Bot. 1999;86(11):1637–1644. http://dx.doi.org/10.2307/2656800

Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, et al. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann For Sci. 2002;59(7):777–787. http://dx.doi.org/10.1051/forest:2002065

Philipp M, Siegismund HR. What can morphology and isozymes tell us about the history of the Dryas integrifolia-octopetala complex? Mol Ecol. 2003;12(8):2231–2242. http://dx.doi.org/10.1046/j.1365-294X.2003.01875.x

Greimler J, Hermanowski B, Jang CG. A re-evaluation of morphological characters in European Gentianella section Gentianella (Gentianaceae). Plant Syst Evol. 2004;248(1–4). http://dx.doi.org/10.1007/s00606-004-0171-x

Klimko M, Boratyńska K, Montserrat JM, Didukh Y, Romo A, Gómez D, et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora. 2007;202(2):133–147. http://dx.doi.org/10.1016/j.flora.2006.03.006

Marcysiak K, Boratyński A. Contribution to the taxonomy of Pinus uncinata (Pinaceae) based on cone characters. Plant Syst Evol. 2007;264(1–2):57–73. http://dx.doi.org/10.1007/s00606-006-0501-2

Boratynski A, Marcysiak K, Lewandowska A, Jasinska A, Iszkulo G, Burczyk J. Differences in leaf morphology between Quercus petraea and Q. robur adult and young individuals. Silva Fenn. 2008;42(1):115–124.

Huber H, Wiggerman L. Shade avoidance in the clonal herb Trifolium fragiferum: a field study with experimentally manipulated vegetation height. Plant Ecol. 1997;130(1):53–62.

Noda H, Muraoka H, Washitani I. Morphological and physiological acclimation responses to contrasting light and water regimes in Primula sieboldii. Ecol Res. 2004;19(3):331–340. http://dx.doi.org/10.1111/j.1440-1703.2004.00642.x

Marchand FL, Kockelbergh F, van de Vijver B, Beyens L, Nijs I. Are heat and cold resistance of arctic species affected by successive extreme temperature events? New Phytol. 2006;170(2):291–300. http://dx.doi.org/10.1111/j.1469-8137.2006.01659.x

Baquedano F, Valladares F, Castillo F. Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur J Forest Res. 2008;127(6):495–506. http://dx.doi.org/10.1007/s10342-008-0232-8

Fletcher BJ, Press MC, Baxter R, Phoenix GK. Transition zones between vegetation patches in a heterogeneous Arctic landscape: how plant growth and photosynthesis change with abundance at small scales. Oecologia. 2010;163(1):47–56. http://dx.doi.org/10.1007/s00442-009-1532-5

Wijk S. Performance of Salix Herbacea in an Alpine Snow-Bed Gradient. J Ecol. 1986;74(3):675. http://dx.doi.org/10.2307/2260390

Wijk S. Influence of climate and age on annual ahoot ancrement in Salix herbacea. J Ecol. 1986;74(3):685. http://dx.doi.org/10.2307/2260391

Beerling DJ. Salix herbacea L. J Ecol. 1998;86(5):872–895. http://dx.doi.org/10.1046/j.1365-2745.1998.8650872.x

Rundgren M, Beerling D. A Holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden. Holocene. 1999;9(5):509–513. http://dx.doi.org/10.1191/095968399677717287

Beerling DJ, Rundgren M. Leaf metabolic and morphological responses of dwarf willow (Salix herbacea) in the sub-arctic to the past 9000 years of global environmental change. New Phytol. 2000;145(2):257–269. http://dx.doi.org/10.1046/j.1469-8137.2000.00582.x

Stamati K, Blackie S, Brown JWS, Russell J. A set of polymorphic SSR loci for subarctic willow (Salix lanata, S. lapponum and S. herbacea). Mol Ecol Notes. 2003;3(2):280–282. http://dx.doi.org/10.1046/j.1471-8286.2003.00426.x

Stamati K, Hollingsworth PM, Russell J. Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Syst Evol. 2007;269(1–2):75–88. http://dx.doi.org/10.1007/s00606-007-0578-2

Reisch C, Schurm S, Poschlod P. Spatial genetic structure and clonal diversity in an alpine population of Salix herbacea (Salicaceae). Ann Bot. 2007;99(4):647–651. http://dx.doi.org/10.1093/aob/mcl290

Alsos IG, Alm T, Normand S, Brochmann C. Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Global Ecol Biogeogr. 2009;18(2):223–239. http://dx.doi.org/10.1111/j.1466-8238.2008.00439.x

Pawłowski B. Flora Tatr. Rośliny naczyniowe. Warszawa: Polish Scientific Publishers PWN; 1956. (vol 1).

Tutin TG. Salicaceae. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea. Cambridge: Cambridge University Press; 1964. p. 43–55. (vol 1).

Boratynska K. Chorologia i rejonizacja leśna brzozowatych (Betulaceae). Cz. II: Rola brzozowatych w poszczególnych regionach geograficznych. Arboretum Kórnickie. 1983;28:69–99.

de Groot WJ, Thomas PA, Wein RW. Betula nana L. and Betula glandulosa Michx. J Ecol. 1997;85(2):241–264.

Iversen J. The development of Denmark's nature since the last glacial. København: C.A. Reitzels Forlag; 1973.

Ingrouille M. Historical ecology of the British flora. London: Chapman & Hall; 1995.

Ralska-Jasiewiczowa M, Goślar T, Madeyska T, Starkel L, editors. Lake Gościąż, Central Poland. A monographic study. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 1998.

Elkington TT. Introgressive hybridization between Betula nana L. and B. pubescens Ehrh. in north-west Iceland. New Phytol. 1968;67(1):109–118. http://dx.doi.org/10.1111/j.1469-8137.1968.tb05459.x

Wagner F, Neuvonen S, Kürschner WM, Visscher H. The influence of hybridization on epidermal properties of birch species and the consequences for palaeoclimatic interpretations. Plant Ecol. 2000;148(1):61–69.

Anamthawat-Jónsson K, Thórsson AT. Natural hybridization in birch: triploid hybrids between Betula nana and B. pubescens. Plant Cell Tiss Organ Cult. 2003;75(2):99–107.

Palme AE, Su Q, Palsson S, Lascoux M. Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol. 2004;13(1):167–178. http://dx.doi.org/10.1046/j.1365-294X.2003.02034.x

Thórsson AT, Pálsson S, Sigurgeirsson A, Anamthawat-Jónsson K. Morphological variation among Betula nana (diploid), B. pubescens (tetraploid) and their triploid hybrids in Iceland. Ann Bot. 2007;99(6):1183–1193. http://dx.doi.org/10.1093/aob/mcm060

Caseldine CH. Changes of Betula in the Holocene record from Iceland – a paleoclimatic record or evidence for early Holocene hybridization. Rev Palaeobot Palynol. 2001;117:139–152.

Jónsson TH. Stature of sub-arctic birch in relation to growth rate, lifespan and tree form. Ann Bot. 2004;94(5):753–762. http://dx.doi.org/10.1093/aob/mch200

Białobrzeska M, Truchanowicz J. Badania systematyczno-biometryczne nad rodzajem Betula L. ze Szczelińca w górach Stołowych. Rocznik Dendrologiczny. 1990;39:51–78.

Elven R, Karlsson T. Salix L. In: Jonsell B, editor. Flora Nordica. Stockholm: The Bergius Foundation; 2000. p. 117–188. (vol 1).

Beerling DJ, Terry AC, Hopwood C, Osborne CP. Feeling the cold: atmospheric CO2 enrichment and the frost sensitivity of terrestrial plant foliage. Palaeogeogr Palaeoclim Palaeoecol. 2002;182(1–2):3–13. http://dx.doi.org/10.1016/S0031-0182(01)00449-7

Rundgren M, Björck S. Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by high-resolution stomatal index data. Earth Planet Sci Lett. 2003;213(3–4):191–204. http://dx.doi.org/10.1016/S0012-821X(03)00324-8

Kovačić S, Nikolić T. Relations between Betula pendula Roth. (Betulaceae) leaf morphology and environmental factors in five regions of Croatia. Acta Biol Cracov. 2005;47(2):7–13.




DOI: https://doi.org/10.5586/asbp.2012.027

Journal ISSN:
  • 2083-9480 (online)
  • 0001-6977 (print; ceased since 2016)
This is an Open Access journal, which distributes its content under the terms of the Creative Commons Attribution License, which permits redistribution, commercial and non-commercial, provided that the content is properly cited.
The journal is a member of the Committee on Publication Ethics (COPE) and aims to follow the COPE’s principles.
The journal publisher is a member of the Open Access Scholarly Publishers Association.
The journal content is indexed in Similarity Check, the Crossref initiative to prevent scholarly and professional plagiarism.
Publisher
Polish Botanical Society