
Appendix S1 Euler’s polyhedral’s formula and the mean number of
neighbors of a cell.

This is a rather heuristic discussion about finite polygonal tilings of the plane and the
average number of sides of the tiles.

For any convex polyhedron, we have the famous Euler’s polyhedral formula:

V − E + F = 2

where F is the number of faces, E the number of edges between the faces, and V their
number of vertices of the polyhedron.

Following Cauchy, we can “look through one face” of the polyhedron and, in so doing,
project vertices, edges and faces into a tiling of the plane, where all the faces are bounded,
except the projection of the one we’re looking through. The figure we obtain in the plane
is constituted by a convex polygon tiled itself with convex polygons. Euler’s polyhedral
formula remains true for this figure, if we continue counting the face that we’re looking
through, which becomes the infinite face surrounding the polygonal region. It is in fact
true for somewhat more general planar graphs [1].

Assuming we have such a tiling of convex polygons, if we denote by p the average number
of neighbors each face has then p = (1/F )

∑
ni, where ni is the number of neighbors of

Face i. In other words the sum of the number of neighbors for each face is pF =
∑

ni.
For each face, the number of edges, the number of vertices and the number of neighbors
are all equal. By construction each edge is shared by 2 faces, so in the sum of numbers of
neighbors, each edge is counted twice: pF = 2E. If we further assume (temporarily) that
each vertex is of degree 3 then in the sum of number of neighbors, each vertex is counted
three times: pF = 3V . Replacing these last two expressions in Euler’s polyhedral formula,
one then obtains pF/3 − pF/2 + F = 2 which, solving for p yields

p = 6(1 − 2/F ).

For a large tiling (i.e. for large F ), one thus has an average of slightly less than 6 neighbors.
See [2], p. 65 for a similar fact in the context of Voronöı meshes.

We assume we have such a tilling of convex faces, with edges separating different faces,
starting and ending at vertices of degree at least 3 (no edge inside a face, or vertex of
degree 1 or 2). The degree of a vertex must “generically” be 3. To see this, we assume
here for simplicity that the tilings we’re considering are by Voronöı cells, or as described in
this article, deformations of such tilings that preserve their original topology.1 If we allow 
the smallest random perturbation of the centers of the cells, any vertex of degree 4 (with
probability 1) splits into 2 vertices of degree 3. See Fig. S1 for an example. Likewise, under 
perturbation, vertices of degree 5 generically split into 3 vertices of degree 3, and vertices

of degree n split into n − 2 vertices of degree 3. In other words such higher degree vertices

1This fact must be valid for a much larger class of tilings).
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are not topologically stable, and generically (i.e. with probability 1) our tilings will have
only vertices of degree 3.

Figure S1: A Voronoї tiling and its perturbation On the left, the Voronoї mesh of a perfectly spaced 
lattice of 25 points. Each vertex has degree 4. On the right, the lattice has been randomly perturbed. 
Every vertex of the Voronöı polygonal cells has degree 3: each vertex of degree 4 of the lattice’s Voronöı 
mesh has split into two vertices of degree 3 (some are very close to one another. Each vertex contributes a 
new side to each incident face with probability 1/2.

The contribution of higher degree vertices. Under certain constraints, it might be
unavoidable to have vertices of higher degree, however. One can in this case evaluate the
contribution of higher degree vertices to the average number of neighbors p.

If the tiling only has vertices of degree 4 (as in the Voronoї mesh for the lattice in Fig. 
S1), in summing the number of neighbors, each vertex is counted 4 times now, so pF = 4V . In 
general, for a tiling with only degree k vertices, one would obtain pF = kV

If the tiling has vertices of mixed degrees (but higher than 2, as we have assumed),
we can partition the set of vertices in subsets of vertices of same degree k, and denote the
number of such vertices Vk. As seen above, the contribution of vertices of degree k to the
sum of neighbors is kVk, yielding at total of

pF = 3V3 + 4V4 + 5V5 + ... + nVn

At the same time the total number of vertices is V = V3 +V4 +V5 + . . .+Vn, which enables
us to substitute for V3 in the previous equation:

pF = 3V + V4 + 2V5 + 3V6 + ... + (n− 3)Vn.

( It is not surprising to find in the coefficients of Vk the number of degree 3 vertices a
degree k vertex would generically split into). From this equation, we can in turn solve for
V and using pF = 2E and Euler’s polyhedral formula, we obtain after some algebra:

p = 6 + (−12 + 2V4 + 4V5 + 6V6 + ... + 2(n− 3)Vn)/F.
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This gives the deviation from the mean of 6 neighbors due to higher degree vertices.
A more rigorous treatment of this material would spell out exactly the kind of tilings

we’re considering, and the kind of randomness allowed in our argument about the genericity
of degree 3 vertices. The combinatorial structure of edges and vertices at the boundary of
the region is also important, and we avoided this discussion somewhat - and in particular
the issue of vertices of degree 2, which we have avoided by fiat (see [3]).
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