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Abstract

Diverse processes leading to doubled haploid (DH) plant production, such as
microspore embryogenesis, gynogenesis, and distant hybridization followed by
genome elimination, are based on the unique ability of plant cells to form haploid
embryos without fertilization. All of these are possible because of various in vitro
culture systems that enable the growth and development of tissues or single cells
outside of the parental organism. The possibility of re-directing cell development
from its original pathway to embryogenesis brings several benefits to many
research areas, but the most important is the possibility of its implementation in
breeding programs.

This review summarizes the achievements of Polish research groups in studies of
the mechanisms of haploid/DH embryo development and demonstrates the
practical applications of these systems in basic studies and plant breeding. It shows
the results of studies on economically important crops including barley (Hordeum
vulgare L.), oilseed rape (Brassica napus L.), triticale (x Triticosecale Wittm.), oat
(Avena sativa L.), rye (Secale cereale L.), sugar beet (Beta vulgaris ssp. vulgaris L.),
and some vegetable species, including carrot (Daucus carota L.), onion (Allium
cepa L.), red beet (Beta vulgaris L.), and members of the Brassicaceae.
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1. Introduction

Diverse processes of haploid and doubled haploid (DH) plant production, including
microspore embryogenesis, gynogenesis, and distant crossing followed by genome
elimination, are based on the unique ability of plants to form embryos without
fertilization, which can be considered a manifestation of plant cell totipotency. All of
these are possible only because of various in vitro culture systems that enable the
growth and development of tissues or single cells outside of the parental organism.
The possibility of redirecting cell development from its original pathway to
embryogenesis brings benefits to many research areas, but the most important is the
possibility of its implementation in breeding programs.

Breeding of new crop cultivars is a long and costly process, especially in winter-type
plants, which require a relatively long time to generate each breeding generation;
therefore, it is important to introduce innovative biotechnology methods to
accelerate new crop cultivation. In traditional plant breeding, the production of a
new cultivar takes an average of 1215 years and involves many phases of crossing,
selection, and testing of the preferred recombinants. The most important advantage
of the DH technique is the time reduction in homozygous line production to one
generation compared to five-six generations of inbreeding by self-crossing in
conventional breeding. In generated DHs, all loci are homozygous, and therefore,
all genes are expressed without the phenomenon of dominance. As all traits are
genetically fixed, DH lines can be studied in field experiments over many years, and
the selection of desired functional traits is much more efficient. As a consequence of
genetic homogeneity, DH lines are characterized by morphological uniformity,
synchronized time of anthesis and seed setting. Selection allowed to identify both
high yielding and high-quality seed producing. Newly obtained genotypes can
quickly meet market expectations, ensuring greater profits from the cultivation of
modern cultivars.

Thus, understanding the mechanisms controlling the developmental switches
involved in DH formation is of great importance and a focus of many scientists and
breeders worldwide, including Poland.

The process of “microspore embryogenesis” (ME; synonymous with “androgenesis™)
consists of stress-triggered redirection of the development of microspores toward
embryogenesis. It was first observed by Guha and Maheshwari in Datura innoxia in
1964 and was the shortest, most uniform, and theoretically the most effective way to
achieve total homozygosity (DH plant production). Moreover, microspore
suspensions with a density of up to approximately 100,000 per mL of culture
medium can serve as a highly advantageous model for various experiments. The
system allows for the continuous monitoring of changes in cell structure, as well as
for the instant evaluation of modifications introduced in its artificial environment.
Microspore suspensions or haploid embryos can also be used as advantageous
targets for mutations or transformations, allowing for the production of DH plants
homozygous for the mutated/transformed gene. Another in vitro technique, anther
culture, is less beneficial as a tool for precise analyses, but because of its simplicity,

it has been widely implemented in breeding practice for DH line production.

One more process, “distant crossing” has been used as an alternative method for
production of haploid/DH plants. It was introduced by Kasha and Kao in the early
1970s and is also known as the bulbosum method (Kasha & Kao, 1970). This process
is based on uniparental chromosome elimination during the early stages of hybrid
embryo development, leading to the formation of a haploid embryo. It was first
reported as a result of the interspecific hybridization of cultivated barley (Hordeum
vulgare L.) with H. bulbosum (L.); however, other distant crosses, such as wheat x
maize, wheat x barley, or oat x maize, have been used to produce haploids in cereals.
Maternal haploid induction is the most commonly used technique for maize DH
production, mainly because of the discovery of inducer lines, which allow
identification of haploid plants by their expression of the anthocyanin color marker
R1I-nj (Navajo phenotype; Chaikam et al., 2015).

In addition, ovules, ovaries, or flower buds can switch from their normal
gametophytic pathway toward sporophytic development, which is described as
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gynogenesis. Compared to ME, the gynogenic strategy to produce haploids seems to
be less effective, but still advantageous in species with male sterility, a high frequency
of albino plants, or that are recalcitrant to microspore reprogramming. Direct
haploid parthenogenesis, in which female gametophytes serve as the origin of
haploid cells, is beneficial, but plant regeneration can be obtained indirectly by calli
proliferating from induced haploid embryos. The first in vitro haploid plants of
gynogenic origin were obtained from barley (San Noeum, 1976). Since then,
advances have been made in other species.

Many years of research have brought significant progress in the understanding of the
mechanisms that redirect cell fate toward embryogenic development. However, the
precise mechanism underlying this phenomenon has not yet been definitively
identified. For example, despite the huge theoretical potential of ME, in practice
usually only a small fraction of in vitro cultured microspores switch to the
embryogenic pathway. Common bottlenecks are the low regeneration potential of
microspore-derived embryo-like structures (ELSs) and, in the case of
monocotyledons including the most important cereals, the high frequency of albino
regenerants, which are unable to survive ex vitro (Wedzony et al., 2009).

The problem is the number of internal and environmental factors and the complexity
of their interactions involved in determining the course and effectiveness of the
process. This technology can be incorporated into breeding practices in only a
limited number of plant species. There is a need for new data and insights to break
down these barriers and enable the development of more efficient procedures.

This review summarizes the achievements of Polish research groups in examining
the mechanisms of non-zygotic haploid/DH embryo development and demonstrates
the practical applications of these systems in basic plant studies and breeding.

The work described here has made an important contribution to our understanding
of the complex mechanisms of non-zygotic embryo formation leading to DH plant
formation. The outcome has been the development of several efficient methods for
obtaining DH lines, mainly in cereals and Brassicaceae species, which are very useful
in modern plant breeding.

2. Triticale (xTriticosecale Wittm.) as the Plant Model for Studies on
Microspore Embryogenesis

Triticale is an artificial species that originated from a cross between wheat and rye,
and undertaken with the hope that it would combine the high grain quality of
Triticum with the vigor and high adaptability to adverse environmental conditions of
Secale. These expectations were not completely fulfilled; moreover, the complex
genetic organization resulted in genetic instability and genomic changes. Effective
DH technology, which provides totally homozygous models for basic studies and can
be used as an advanced tool in breeding, would seem to be the most promising way
to further improve this species.

Various Polish triticale cultivars have been the foci of ME studies conducted in the
Department of Cell Biology at the Franciszek Gorski Institute of Plant Physiology
Polish Academy of Sciences (IPP PAS). As a result of these studies, both anther
culture and isolated microspore culture protocols (Figure 1) have been optimized
and published by Wedzony (2003) and Zur (2007). The establishment and evaluation
of 90 DH lines of winter triticale from the mapping population ‘Saka 3006’ x ‘Modus’
started a new chapter in the research, providing a precisely defined model applicable
to many areas of research. The 3-year-long set of anther culture experiments in
various vegetation seasons allowed the selection of DH lines that stably and
significantly differed in their embryogenic potential and the identification of
quantitative trait loci (QTL) associated with responsiveness to ME-inducing
treatments (Krzewska et al., 2012, 2015). In addition, the selected DH lines also
showed high variation with respect to ME effectiveness in isolated microspore
cultures (Zur et al., 2019).

In the last decade, investigations conducted in the Department of Cell Biology of IPP
PAS have aimed to understand the role of reactive oxygen species (ROS) and cellular
redox potential in ME induction. ROS are products of the partial reduction of
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Figure 1 Microspore embryogenesis (ME) in anther culture and isolated microspore culture of triticale (x Triticosecale Wittm.).
(A) Triticale spike at the stage optimal for ME induction. (B) Isolated triticale anthers transferred to the induction medium.

(C) Embryo-like structures (ELSs) after 6 weeks of in vitro culture. (D) Star-like structures (arrows) in isolated triticale microspore
cultures after transfer to the induction medium. (E) ELSs produced after 6 weeks in vitro co-culture with immature ovaries.

(F) Plantlets regenerated after transfer to the regeneration medium.

molecular oxygen produced in all living cells as an unavoidable by-product of
aerobic metabolism (Mittler, 2002). Their abundance depends on the dynamic
equilibrium between the intensity of ROS generation and efficiency of the
ROS-scavenging system. Intensive accumulation of ROS can be lethal but it can also
be a trigger that initiates stress defense strategies (Miller et al., 2010). Our first study
on two spring triticale cultivars revealed that various stress factors used for ME
initiation affect energy metabolism (respiration rate and heat emission) and the
activity of antioxidant enzymes (superoxide dismutase, catalase, and non-specific
peroxidase). The response was genotype-specific and associated with the
effectiveness of ME induction (Zur et al., 2008, 2009). To verify these results, the
generation of ROS [superoxide anion (O, ) and hydrogen peroxide (H,0,)] and
the activity of both enzymatic and non-enzymatic antioxidants were estimated in
eight DH lines of winter triticale that significantly differed in their embryogenic
potential (Zur, Dubas, Krzewska, Janowiak, et al., 2014). The crucial requirement for
high efficiency ME was found to be the ability to increase or at least sustain the
activity of antioxidant enzymes during low-temperature tiller treatment (3 weeks at
4 °C) used for ME induction (Zur, Dubas, et al., 2021). Based on the positive
correlation between ME effectiveness and ROS generation (r = 0.85), it was
suggested for the first time that these molecules play an important signaling role and
that their generation is necessary for successful ME initiation (Zur, Dubas,
Krzewska, Janowiak, et al., 2014; Zur, Dubas, et al., 2021). It has also been shown
that non-enzymatic antioxidants cannot efficiently substitute for the enzymatic
defense system against ROS (Zur, Dubas, Krzewska, Janowiak, et al., 2014). However,
one of the most important low-molecular-weight antioxidants, glutathione, the key
regulator of cellular redox homeostasis, seemed to be involved in the subsequent
stages of ELS development (Zur et al., 2019). The effects of tiller treatment with
reduced glutathione (GSH) varied depending on the stress intensity and activity of
endogenous antioxidative systems. This treatment sustained microspore viability
because the strongly reduced intracellular environment lowered ROS accumulation
and decreased the intensity of oxidative stress. However, ROS elimination
suppressed the transduction of the signal necessary for microspore reprogramming
(Zur, Dubas, et al., 2021; Zur et al., 2019). In contrast, a more oxidized environment
(lower redox potential) promoted the next stages of ELS formation. These findings
shed new light on the role of ROS as common signaling molecules involved directly
in microspore reprogramming and ME induction (Figure 2).

Our other studies have focused on the hormonal regulation of ME. The role of
phytohormones, mainly auxins (Auxs) and cytokinins (CKs), in ME has been widely
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Figure 2 Determinants of successful induction of microspore embryogenesis (ME) in isolated microspore cultures of triticale
(xTriticosecale Wittm.). Low temperature treatment (3 weeks at 4 °C) - a standard trigger of ME - applied to tillers containing
uninucleate, totipotent microspores (UnM) is associated with generation of reactive oxygen species (ROS), necessary for
microspore reprogramming. High activity of antioxidative enzymes (AEs) sustains microspore viability and allows for effective ME
induction (visible in high number of star-like structures, SLS). Decreased activity of AEs frequently results in cell death. However,
even high viability of microspores does not ensure final success as the next stages of embryogenic development require a more
oxidized environment (lower redox potential).

studied and described by many authors (reviewed by Zur, Dubas, Krzewska, &
Janowiak, 2015), but our focus was a unique analysis of endogenous homeostasis and
crosstalk between Aux, CKs, and abscisic acid (ABA) associated with the acquisition
of microspore totipotency. It was revealed that low temperature tiller treatment

(3 weeks at 4 °C), used as a standard for ME induction in triticale, was accompanied
by significant changes in the levels of all analyzed phytohormones. Lower values of
Aux/CKs, Aux/ABA, and CKs/ABA ratios, as well as a proper balance between
endogenous Auxs and Auxs supplied by culture media, were crucial for highly
efficient ELS formation and green plant regeneration (Zur, Dubas, Krzewska,
Waligérski, et al., 2015).

Several DH lines of triticale have also been used in studies on genetic and epigenetic
control of microspore reprogramming. It has been shown that some wheat
orthologous genes identified earlier as being involved in microspore-derived ELS
development (Sanchez-Diaz et al., 2013) could also be found in triticale and that
their expression pattern was related to efficiency of ME induction (Zur, Dubas,
Krzewska, Sdnchez-Diaz, et al., 2014). Among them were genes associated with
signaling, control of cell wall modification, cell pattern formation, intra-embryo
communication, and differentiation, as well as genes involved in oxidative stress
defense, including glutathione transferases (GSTF2, GSTA2), chitinase (CHI3), and
small cysteine-rich proteins similar to plant defensins or thionins (TadI). Changes in
their expression associated with ME-inducing stress treatment support our
hypothesis regarding the role of ROS in the control of ME at the molecular level.
Other genes that were identified regulate the biosynthesis of auxin (TAA1b) and
auxin-responsive elements of the network that direct somatic plant cells toward
embryogenic development (AGL14 and SERK).

The expression of genes related to ME (TaTPD1-like, GSTF2, GSTA2, CHI3, Tadl,
TaNF-YA7, SERK2, and TaMEI) was dysregulated by the application of two
inhibitors of DNA methylation (5-azacytidine and 2’-deoxy-5-azacytidine), which
confirmed the role of epigenetic processes in triticale microspore reprogramming
(Nowicka et al., 2019). Although the effect of DNA hypomethylation was
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genotype-dependent, the applicability of epigenetic inhibitors to improve the
effectiveness of triticale DHs production has been postulated.

Our studies also revealed that ME induced by low-temperature tiller treatment

(3 weeks at 4 °C) is associated with changes in the triticale anther proteome
(Krzewska et al., 2017). Most changes revealed in protein profiles were proteins
involved in cell metabolism (47%), stress response (28%), protein synthesis and
storage (9% and 6%, respectively), energy metabolism (6%), and active cell division
(3%). In embryogenic microspores, proteins that were significantly more abundant
included proteins that act to ensure proper metabolism and energy production, such
as beta-amylase, fructokinase-2, oxygen-evolving enhancer protein 1,
ribulose-1,5-bisphosphate carboxylase/oxygenase, and ATP synthase CF1 beta
subunit. Evidently, important roles are played by proteins regulating biosynthesis of
phytohormones (S-adenosyl-L-methionine synthase) and determining stress
adaptation ability (elicitor responsive protein 3, heat shock cognate 70 kDa protein 4,
putative aconitate hydratase). Two protein species (enolase and 128 storage protein)
have been proposed as potential markers of ME. Further studies (Krzewska et al.,
2021) have shown that tiller treatment with 5.0 uM 5-azacytidine that stimulated
ELS development also alters the protein profile of triticale anthers. The most
important modifications suggested a switch from anabolic to catabolic metabolism
(downregulation of chlorophyll a-b binding protein, coproporphyrinogen-III
oxidase, RuBisCO large subunit-binding protein subunit beta, and oxygen-evolving
enhancer protein 1 concomitant with upregulation of glyceraldehyde-3-phosphate
dehydrogenase, enolase, and phosphoglucomutase), as well as more effective
protection of proper protein folding (heat shock 70 kDa) and degradation of
dysfunctional or damaged proteins (26S proteasome non-ATPase regulatory
subunit 7).

The data collected not only increase our knowledge of the mechanisms regulating
microspore reprogramming and ME induction in triticale, but also provide the basis
for practical improvement of in vitro culture protocols for other, more recalcitrant
crops such as rye (Zielinski et al., 2020).

3. Molecular Mechanisms Leading to Albinism in Cereal Androgenesis

Albinism, which occurs in anther and microspore cultures of many monocot species,
is a fundamental problem that limits the utilization of androgenesis in breeding
programs for cereals and grasses (Zur, Gajecka, et al., 2021). The lack of chlorophyll
(albinism) present in a significant proportion of regenerated plants can significantly
reduce the final DH production efficiency (Figure 3). Albino plants contain
non-functional chloroplasts, which means that they are only able to grow in vitro.

Microspores contain proplastids that can differentiate into all types of plastids (Jarvis
& Lopez-Juez, 2013). During in vivo development of microspores into pollen grains,
proplastids differentiate into amyloplasts that accumulate starch (Clement & Pacini,
2001). These proplastids form fully functional chloroplasts during androgenesis.
Nevertheless, some microspore proplastids fail to differentiate and remain arrested
early in their differentiation, leading to the regeneration of albino plants (Caredda
etal., 2000). Albinism is a highly genotype-dependent phenomenon that occurs in
anther and isolated microspore cultures of all the main cereals, including wheat
(Lantos et al., 2006), rice (He et al., 2006), barley (Makowska et al., 2015), and
triticale (Lantos et al., 2014). In some genotypes, the frequency of albino plants can
reach almost 100%, which excludes the utilization of these genotypes in DH-based
breeding programs. Several attempts have been made to explore various hypotheses
to identify the causes of albino development. One of these concerns a change in
plastid genome structure, mostly deletions, identified in albino regenerants of barley
(Day & Ellis, 1985), triticale (Mozgova et al., 2012), wheat (Day & Ellis, 1984) and
rice (Yamagishi, 2002). The size and location of deletions differed among albino
regenerants, but most deletions appeared in the long single-copy region (LSC) of the
plastid genome, which is the most unstable part of the plastome (Dunford & Walden,
1991). The LSC region contains genes that are involved in photosynthesis, such as
genes encoding the subunits of photosystems I and II. Moreover, the study of Ankele
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cv. 'Jersey’

cv. '‘Bruce’ cv. 'Skald’ cv. 'Aliciana’ cv. 'Mercada’

Figure 3 Development of embryos and regeneration of plants in isolated microspore culture of barley (Hordeum vulgare L.).

(A) Mid-to-late (ML) microspores after isolation in mannitol solution. (B) Induced microspore-derived embryos on twenty-first
day of in vitro culture. (C) Differentiating embryos on thirty-fifth day of in vitro culture. (D,E) Regenerating green (D) and albino
(E) plantlets. (F) Representative regeneration dishes of five barley genotypes presenting: 90%-70% (‘Jersey; ‘Bruce’), ca. 50%
(‘Skald, ‘KWS Aliciana’), and 5% of green regenerants (‘Mercada’).

et al. (2005) demonstrated that only some of the albino plants regenerated from
wheat anther culture carried changes in the plastome structure, but all of them
exhibited altered transcriptome profiles compared to the green regenerants.

The differential display analysis of green and albino regenerants showed a decreased
expression level of genes related to photosynthesis, for example, RbcS encoding a
small subunit of RubisCo, and higher expression of genes involved in plastid
biogenesis in albino plants (Ankele et al., 2005). Additionally, in barley
(Mufoz-Amatriain et al., 2008) and triticale (Krzewska et al., 2015), QTLs associated
with the frequency of green plants regenerated from androgenic cultures have been
identified. However, the molecular mechanisms leading to the alteration of
chloroplast development in albino regenerants remain unclear, and none of the
proposed hypotheses explain the genotype-dependent regeneration of albino plants.

At the Institute of Biology, Biotechnology and Environmental Protection, Faculty of
Natural Sciences, University of Silesia in Katowice, we conducted studies aimed at
identifying the molecular processes leading to the genotype-dependent formation of
albino regenerants in isolated microspore culture of barley (Hordeum vulgare L.).
Using spring barley cultivars ‘Jersey’ and ‘Mercada, which both exhibited a high
regeneration potential but differed in their ability to regenerate green plants during
androgenesis, we showed that the state of plastid differentiation in microspores at the
time of material collection determines their fate during in vitro culture (Gajecka

et al., 2020). The cultivar ‘Mercada, which produces more than 90% albino
regenerants, exhibited a faster differentiation of proplastids into amyloplasts during
pollen development in vivo. In the microspores of this cultivar, at the medium-late
mononuclear (ML) stage, which is routinely used for culture initiation (Dunwell,
2010), nearly half of the plastids are differentiated into amyloplasts. The remaining
half consisted of proplastids and only a few initial proplastids. In contrast,
microspores of ‘Jersey; that produced mostly green plants in androgenic culture,

at the same ML stage contained mostly undifferentiated initial proplastids, which
showed a low electron density when examined using transmission electron
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microscope (TEM). Amyloplasts in ‘Jersey” were not observed till the binucleate
immature pollen grain stage. The hypothesis of early amyloplast formation in
albino-producing genotypes was verified by the analysis of several barley cultivars
that had highly divergent frequencies of albino plant regeneration, varying between
10% and 98%. Cultivars that mostly produced albino regenerants in in vitro culture
harbored a high number of amyloplasts in ML microspores, whereas in cultivars
with a high ability to regenerate green plants, only initial proplastids and a few
differentiating proplastids were identified. The number of albino plants regenerated
from microspore culture was strongly correlated with the amyloplast number in the
ML microspores (r = 0.94) and negatively correlated with the number of
differentiating proplastids (r = —0.88) (Gajecka et al., 2020).

Together with the presence of amyloplasts, we observed degradation of the plastid
genomes, as demonstrated by a decrease in the average number of plastomes
between the early (E) and mid-to-late (ML) stages of microspores of ‘Mercada, as
well as a divergent number of plastid genes located throughout the plastid genome.

The occurrence of amyloplasts was preceded by an increase in the expression levels
of genes encoding enzymes of reserve starch biosynthesis in pollen grains, including
the Sbel (starch branching enzymel), Dpe2 (4-alpha-glucanotransferase2), and
granule-bound starch synthase I (GBSSI) genes. In ‘Mercada’ that produced mostly
albino regenerants, expression of these genes increased to high levels as early as the
early-to-mid (EM) microspores, whereas in Jersey’ the increase was observed only
in the ML microspores. When the expression of these genes was analyzed in 10
barley cultivars differing in their ability to produce green regenerants, a very strong
positive correlation was observed between the expression levels of the Dpe2, GBSSI,
and Sbel genes in the EM microspores and the rate of regenerated albino plants in
the in vitro culture. This analysis allowed us to distinguish GBSSI gene expression in
EM microspores as a valuable marker of amyloplast differentiation, which indicated
the genotypes that would produce mostly albino regenerants in isolated microspore
culture. It can be concluded that the faster conversion of proplastids into
amyloplasts, which results in a high proportion of amyloplasts in ML microspores,
is associated with the formation of albino plants during androgenesis.

Based on the correlation between the early formation of amyloplasts during
microspore development and the proportion of albino plants in androgenic culture,
we assumed that the initiation of in vitro cultures from an earlier stage of microspore
development might positively influence the ratio of green to albino regenerants. To
test this hypothesis, the microspore cultures of some cultivars expressing very high
frequency of albino regenerants (ca. 90%) were initiated from the microspores at the
EM stage of development, which harbored the initial proplastids only. The frequency
of green plant regeneration increased significantly, on average, from 12.6% to 46.6%,
which allowed approximately 60 plants per 100,000 microspores (i.e., in a Petri dish
3 ¢cm in diameter) to be obtained. This indicates that the initiation of cultures from
microspores containing proplastids prior to amyloplast differentiation can
significantly improve the regeneration of green plants and overcome the problem of
albinism during barley androgenesis (Gajecka et al., 2020).

Comparison of plastid differentiation between cultivars Jersey’ and ‘Mercada’ during
ME and plant regeneration enabled us to gain insights into the molecular
mechanisms leading to the formation of albino plants (Gajecka et al., 2021). During
induction of ME, the expression of Dpe2, GBSSI, and Sbel genes involved in reserve
starch biosynthesis decreased in both cultivars, which indicates that the application
of stress treatment before in vitro culture inhibited reserve starch synthesis during
induction of ME. In contrast, the expression of GBSSIb and SSIIb encoding enzymes
involved in assimilatory starch synthesis increased gradually after pre-treatment in
both cultivars. However, in ‘Mercada’ the increase in the number of amyloplasts was
observed in developing embryos before activation of assimilatory starch synthesis
genes, which indicated that the amyloplasts harbored by the microspores at the stage
of culture initiation were capable of division. During embryo differentiation,
between the twenty-first and thirty-fifth days of in vitro culture, a significant decline
in plastome copy number was observed in both cultivars. The number of plastome
genomes increased in ‘Jersey’ during the further phases of embryo development but
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remained at a low level in ‘Mercada’ embryos. Additionally, in ‘Mercada, apart from
the decline of plastome copies, the numbers of individual plastid gene copies also
varied and differed from the values expected based on the gene location within the
plastome.

The plastid genome of ‘Mercada’ shows high instability during embryo development.
We assumed that a low number of correct plastome copies would influence the
differentiation of proplastids into chloroplasts. A high number of correct plastid
genomes is considered a checkpoint for chloroplast differentiation (Maréchal &
Brisson, 2010). Possession of a high number of plastomes, together with the effective
transcription machinery, provides enough plastid rRNAs transcripts for chloroplast
differentiation. Transcription in plastids is performed by two RNA polymerases:
NEP nuclear-encoded polymerase (NEP) and plastid-encoded polymerase (PEP)
(Yagi & Shiina, 2014). NEP and PEP recognize specific promoters and transcribe a
specific set of genes, although their specificities partially overlap. In the early stage of
plastid biogenesis, NEP, a single-subunit phage-type RNA polymerase, is the major
RNA polymerase for the transcription of plastid-localized genes involved in plastid
biogenesis. As proplastid-to-chloroplast differentiation progresses, the major role in
gene transcription in plastids is acquired by the bacterial-type PEP polymerase. PEP
consists of five subunits: two o and B, p’, and p” encoded by the plastid rpoA, rpoB,
rpoCl, and rpoC2 genes located in separate operons. The proper action of PEP
depends on sigma factors, which are encoded by the SigI-Sig6 genes located in the
nuclear genome and transported into the plastid. Individual sigma factors recognize
specific promoters and enable transcription initiation by the PEP holoenzyme
(Pfannschmidt et al., 2015). The transition of transcription polymerases is regulated
by the SIG2 factor, which after import to the plastid, forms a complex with the PEP
and initiates the transcription of tRNA®™, High levels of tRNA®™ transcripts inhibit
NEP activity by binding to it (Hanaoka et al., 2005). It should be stressed that only
PEP-dependent transcription of plastome rRNA supplies sufficient rRNA molecules
for the assembly of plastid ribosomes and translation of chloroplast proteins (B6rner
etal., 2015). At the Institute of Biology, Biotechnology and Environmental
Protection, University of Silesia in Katowice, we analyzed the expression of nuclear
and plastid genes involved in chloroplast biogenesis (including Sig2 and tRNA%*)
during embryo differentiation and plant regeneration in ‘Jersey’ and ‘Mercada’
cultures. We revealed that during the conversion of Jersey, the PEP-dependent
transcription was activated between the forty-third and forty-sixth days of culture,
based on the observed 37-fold increase of Sig2 and 5-fold increase of tRNA %
transcripts within this period. In contrast, in ‘Mercada’ we observed a relatively low
expression level of tRNAS™ throughout the whole period of plant regeneration,
which indicated that in the absence of PEP activity, the NEP was still the dominant
RNA polymerase in ‘Mercada’ plastids. As a consequence of the failed NEP-to-PEP
transition, no significant increase in plastid rRNAs was observed in differentiating
embryos and regenerated plantlets of this cultivar. In contrast, in Jersey, the relative
expression of 16S and 23S genes encoding plastid rRNAs increased 20-30-fold
between the forty-third and forty-sixth days of culture and reached 300-500 times
higher levels in the regenerated plantlets on the fifty-fifth day of culture.
Consequently, in ‘Mercada’ there was no activation in the regenerating embryos and
albino regenerants of the transcriptional factors GLKs, which are the positive
regulators of photosynthesis-associated nuclear genes (Gajecka et al., 2021).

4. The Development of DHs Technology for Cereal Species Through
Selection of New Varieties With High Embryogenic Potential and Its
Implementation to Breeding Practices

In the nineties, several DH methods, including the bulbosum method, anthers
culture for barley and wheat, and isolated microspores culture for barley and triticale
were developed for the most important cereal species by the Department of
Biotechnology and Cytogenetics of Plant Breeding and Acclimatization Institute —
National Research Institute (PBAI-NRI) in Radzikéw (Czembor et al., 2003;
Konieczny et al., 2005; Makowska, Katuzniak, et al., 2017; Makowska & Oleszczuk,
2014; Makowska et al., 2015, Makowska, Oleszczuk, & Zimny, 2017; Oleszczuk et al.,
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Figure 4 Regeneration effectiveness (number of green regenerants per 100 anthers
cultured) of various cereals. Anthers were collected from 23 to 30 lines from each species,
and from at least 20 spikes per line.

2004, 2006). Every year, we produce several thousand DHs of various cereal species,
which are sent to breeding companies where they are successfully used in breeding
programs.

As part of our research on DH production, we compared the androgenic capacities
of various economically important cereal species, kindly provided by Polish plant
breeding companies. Enormous variation in androgenesis capacity exists between
different plant species. Based on our experience, a hierarchy of cereals has emerged
in terms of their morphogenic capacity in anther cultures (Figure 4). In this respect,
Triticale was always considered the most responsive of the studied species. Wheat
was more recalcitrant than barley, whereas rye and oat were the most difficult species
in which to initiate androgenesis.

Highly efficient regeneration was achieved. For example, during three seasons of
production, 51 crossing combinations of triticale over 19,000 DH lines were
regenerated and transferred to breeding companies. Large differences were observed
in the effectiveness of regeneration between genotypes and spikes. The values varied
from 0.4 to 98 green regenerants per spike (on average, 19 green regenerants per
spike).

To optimize the performance of the in vitro culture method, we used Taguchi’s
method, which is applicable when multiple factors are subject to simultaneous
optimization, and the use of a complete plan is uneconomical owing to the size of the
experiment. Importantly, the application of appropriate statistical data analysis based
on statistical methods and the use of Taguchi’s method with orthogonal arrays can
reduce the number of experiments needed for optimization from 27 to nine
experimental variants (for three factors at three levels) compared to the example of
the complete plan (Orlowska et al., 2020).

Although the regeneration of DH plants of triticale has been achieved for many
cultivars, there are still some challenges in enhancing the efficiency of androgenesis.
In previous years, we have conducted research on various aspects of homozygous
plant production.

Our studies indicate that some regenerants among populations of DH triticale lines
are clones formed through secondary embryogenesis in the callus stage or through
the formation of twin/polyembryos (Oleszczuk et al., 2014). The scale of this
phenomenon reduces the genetic variation generated via androgenesis and restricts
the selection of genetically unique lines for breeding purposes. This knowledge
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should be considered when modifying DH regeneration protocols to reduce the
number of clonal replicates.

Another problem with triticale androgenesis is the low frequency of spontaneous
diploidization among regenerants. We found that crossing parental lines with DH
can increase not only the percentage of spontaneous chromosome doubling but also
androgenesis efficiency (Oleszczuk et al., 2021). Meiotic restitution can also increase
the number of fertile androgenic regenerants. In the present study, a mapping
population of microspore-derived haploids from an F1 wheat-rye hybrid was created
(Oleszczuk et al., 2019). Further studies on the localization of the loci responsible for
meiotic restitution should be undertaken for the practical application of this process
in the doubling of chromosomes in haploids.

Although commercial triticale cultivars are meiotically stable, poor chromosome
pairing in breeding hybrids results in the occasional occurrence of univalents
(Oleszczuk & Banaszak, 2016). Our results showed that aneuploids are obtained in
high proportions during triticale androgenesis (Oleszczuk et al., 2011), further
reducing the efficiency of the process. Aneuploidy may also occur in advanced
breeding lines, creating stability issues in variety registration.

The published methodologies for homozygous lines provide the opportunity to
conduct advanced basic research and breeding with a new tool for plant regeneration
from isolated microspores (Oleszczuk et al., 2004), stabilizing genotypes, and
increasing plant breeding productivity (Tyrka et al., 2018; Warzecha et al., 2005).

The methodology for producing DHs has been successfully implemented by
breeding companies, resulting in the development of new cultivars. This has been
verified by registering at least two triticale cultivars (‘Borowik’ and ‘Panteon’ - Plant
Breeding Strzelce Ltd. Co., PBAI-NRI Group) of high agronomic importance.
‘Borowik’ is a winter triticalethat can be grown for grain, fodder, green matter, straw
for animal production, or for combustion for heating biofuel (ethanol). The second
cultivar ‘Panteon’ has the highest protein content among triticale (bread triticale),
yielding protein at the level of 110%-120% of the standard. It is resistant to soil
acidification, has low soil requirements, and exhibits very good winter hardiness.

Our achievements were appreciated by the Minister of Agriculture and Rural
Development through the granting of “The Award of the Minister of Agriculture and
Rural Development for achievements in the implementation of progress in
agriculture” in 2011.

Barley is considered to be a model species among monocot plants for a wide range of
biological experiments. After developing (between 2000 and 2004) and describing
the method of isolated microspore culture, the methods were applied to an in-depth
study of various aspects of barley androgenesis. We focused on three aspects that we
believe are important for barley androgenesis: (i) the genotype of the donor plant as
an element that largely determines the effectiveness of the process, (ii) an attempt to
increase the abundance of regenerated androgenic plants, and (iii) the reduction of
undesirable albinism.

The formation of androgenic structures with low regeneration potential is a common
event observed during androgenesis in barley genotypes. Attempts have been made
to increase the conversion rate of such structures into plants by the application of
gum arabic to the induction medium (Makowska, Kaluzniak, et al., 2017). Gum
arabic is a mixture of compounds including arabinogalactan proteins, which are
involved in restoring and maintaining the embryogenic potential of cells in vitro.
The results obtained confirmed the positive effects of gum application on microspore
survival during the initial days of in vitro culture and on morphology of androgenic
structures, which led to more efficient plant regeneration.

Albinism is common among androgenesis-derived plants, including most cereals,
and the percentage of albino plants varies from 1% to 99.7%, depending on the
genotype. Genetic studies have identified loci that correlate with the appearance of
albino plants produced during androgenesis (Mufioz-Amatriain et al., 2008).
However, there are many reports confirming the effect of specific in vitro culture
conditions on the frequency of regenerated albino plants. Our review paper
discusses issues related to albinism, including its sources, the extent of occurrence
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Figure 5 Illustration of rye androgenesis from callus with androgenic ELS to regenerated plant. (A) Embryogenic callus and clearly
differentiated embryos and ELS. (B) Germinating androgenic embryo. (C) Green plantlets on regeneration medium. (D) Rooted
DH of rye.

among different genotypes, and ways to reduce the number of albino plants in
in vitro cultures (Makowska & Oleszczuk, 2014).

Within the same species, there are often cultivars that are more susceptible to
albinism. Studies conducted on a large and genetically diverse group of spring and
winter barley genotypes have shown that the characteristics of being a winter crop are
positively correlated with regeneration effectiveness (Makowska & Oleszczuk, 2014).
Among the winter genotypes, it was possible to obtain a significantly higher number
of green plants, as well as a lower level of albinism, compared to the spring genotypes
(Makowska et al., 2015). The type of plant development (spring/winter) was not
significant for obtaining regenerants capable of spontaneous doubling of the ploidy.

Studies on the influence of elevated Cu ion content in induction media on the
decrease in the regeneration percentage of chlorophyll-free plants were performed
by Makowska, Oleszczuk, and Zimny (2017). For both tested lines, the number of
androgenic structures produced was not significantly different between the control
and the media enriched with additional copper ions, but the mean total plant
regeneration effectiveness was improved by 34%. This result was due to the higher
number of regenerated green and albino plants, whereas the ratio of the green and
chlorophyll-free regenerants obtained in both genotypes tested remained at the same
level (1:3), regardless of the composition of the medium.

Over many years, we have tested many genotypes, stresses, and in vitro culture
conditions on rye, which is considered a very difficult and resistant species in which
to induce androgenesis. A major success of our laboratory in the past few years has
been the selection of rye lines with an unprecedented high capacity for androgenesis
(J. Zimny, personal communication, 2019; Figure 5). These lines have become model
genotypes for studies on rye androgenesis, making it possible to test the
determinants of androgenesis in a reproducible manner. The optimum stress
conditions to induce microspore division and DH regeneration in rye were
determined. Cooling of shoots with spikes for a period of 21 days, as well as cooling
of shoots with spikes for 14 days in combination with subsequent incubation of
anthers in mannitol solution, were considered the most appropriate type of stress.
The method for isolated microspore culture in rye was mastered, and factors
favorable for this culture were investigated. This led to the discovery of the positive
effect of monochromatic light on anther cultures of rye, which until now has usually
been carried out in the dark (Zimny & Michalski, 2019; Zimny et al., 2021).

The analysis of phenomena that determine the induced variability in in vitro cultures
has important research and practical applications (Bednarek et al., 2007; Oleszczuk
etal, 2011). Research has focused on the composition and complex background
underlying these phenomena, such as morphological, biochemical, and molecular
aspects, and the interactions between some of the determinants (Machczynska,
Ortowska, Mankowski, et al., 2014; Machczynska, Orfowska, Zimny, & Bednarek,
2014; Machczyniska et al., 2015). It is important to know what factors affect the
formation of induced variability in in vitro cultures, and how the level of this
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variability or the effectiveness of green plant regeneration can be regulated
(Ortowska et al., 2016, 2021). Hence, the practical aspect is the possibility of
influencing the phenomenon of induced variability in in vitro cultures. Another
option with practical implications is the optimization of in vitro cultures, as it creates
the possibility of modifying the conditions of running the cultures depending on
experimental needs without going more deeply into the research aspect (Orlowska
et al., 2020).

Our methods have been implemented by several breeding companies and have
become an important part of the breeding process. In addition to studies in applied
botany, we are also involved in basic research in which we are trying to understand
the mechanisms governing generative reproduction, such as restoring fertility in
haploid plants (Oleszczuk et al., 2019).

5. DHs of Winter Oilseed Rape (Brassica napus L.) in Plant Breeding and
Applied Research

In the 1980s, it was shown that it is possible to obtain many microspore-derived
embryos in isolated microspore cultures of oilseed rape, bypassing the proliferation
phase of callus tissue in a liquid NLN medium without the addition of hormones
(Lichter, 1982). Currently, protocols for producing DHs from in vitro isolated
microspore cultures of Brassica napus L. differ between laboratories, but the basic
rules of the procedures remain the same. In this method, efficient ME is induced by
high-temperature (30-35 °C) stress treatment of microspores immediately after
isolation. The main stages of in vitro culture are the isolation of microspores from
donor plant anthers, doubling of chromosome number, and stimulation of
microspore-derived embryos for plant development.

Achievements in research on this technique carried out at the Tissue Culture
Laboratory in Plant Breeding and Acclimatization Institute - PBAI-NRI in Poznan
Division (IHAR-PIB), provided oilseed rape breeders with a method of quickly
obtaining a large number of completely homozygous genotypes, and offered
researchers an excellent resource for many directions of studies on winter oilseed
rape (Cegielska-Taras et al., 2002, 2015). This method was previously described in
detail by Cegielska-Taras et al. (1999), and Cegielska-Taras (2004), and is still being
improved and includes many variants, depending on the susceptibility of individual
genotypes to in vitro ME. Particularly important points of our method, not
previously found in other protocols, are: (i) use of NLN-13 medium (Lichter, 1982)
in the entire isolation process, (ii) treatment of microspores with 0.05% colchicine
solution for 20-22 hours, starting immediately after their isolation, (iii) stimulation
with a high concentration of kinetin (10~* M), which allows for the development of
shoots from androgenic embryos in the process of organogenesis (Figure 6).

Treatment of freshly isolated microspores with colchicine results in a doubling of the
number of chromosomes in the range by 16%-94%, depending on the donor plants
(Szata et al., 2020). In addition to doubling the number of chromosomes at the in
vitro culture stage, methods have also been developed for doubling chromosome
number in young haploid plants in vivo by dipping their roots or axillary shoots in
colchicine solution (Szata et al., 2020). This has made it possible to double the
chromosome number of each haploid winter oilseed rape plant. The method of
obtaining DH lines through isolated microspore culture is currently an integral part
of the breeding programs for oilseed rape in Poland. The protocol is characterized by
high repeatability and efficiency in the mass production of DHs from different donor
plants. This method is easily adaptable to the conditions of many laboratories.

In 2005, this protocol was implemented in the Plant Breeding Company Strzelce
Ltd., Division Borowo, and later in Division Malyszyn, where thousands of DHs of
oilseed rape are obtained annually. Owing to the introduction of the method of
doubling the number of chromosomes in microspores immediately after their
isolation and the use of the method of stimulating embryos to develop into plants,
this method is characterized by the low cost of obtaining each DH line.

The DH line could be a potential new cultivar. As a result of 5 years of breeding
work, the DH MA-103 line was selected by the Plant Breeding Company Strzelce
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Figure 6 Stages of doubled haploid production of oilseed rape (Brassica napus L.) through isolated microspore culture.

(A) Inflorescence of donor plant at the stage optimal for isolation of microspores. (B) Three days of isolated microspore culture —
first microspore divisions. (C) Microspore-derived embryos (MDEs) after 10 days of in vitro culture. (D) MDE:s after 3 weeks of in
vitro culture. (E) Apical shoot development — 5-6 weeks of in vitro culture. (F) Shoot regeneration. (G) Plant rooting.

(H) Androgenic plants transferred to soil after vernalization. (I) Flowering plants in a greenhouse. Photographs from the archives of
the Department of Oilseed Crops, Plant Breeding and Acclimatization Institute — National Research Institute.

Ltd. in 2005 and added to the Polish National List (NLI) in 2008 as the first Polish
open-pollinated cultivar ‘Monolit’ (single DH line) of winter oilseed rape (Cichy

et al., 2005). This cultivar is characterized by a high and stable yield and a high fat
content in the seeds. It has low soil requirements and strong resistance to fungal
diseases, particularly blackleg and sclerotinia stem rot. For several years Monolit was
a reference cultivar for testing other lines of oilseed rape at the Research Centre for
Cultivar Testing (COBORU). As a result of including DHs in breeding programs in
the Plant Breeding Company Smolice Ltd., another winter oilseed rape
open-pollinated cultivar ‘Brendy’ (single DH line) has been bred in a shortened
period of up to 5 years and was listed in the NLI in 2013.

Currently, DH technology is widely used to obtain homozygous lines for the creation
of F1 hybrid cultivars in winter oilseed rape breeding. In Poland, the CMS ogura
cytoplasmic male infertility system is used, and fertility is restored using the Rfo
gene. Consequently, DH technology is primarily used for gene pool creation to
restore male fertility (Poptawska et al., 2007; Szata et al., 2016).

To broaden the genetic variation of oilseed rape, the diploid progenitor species
Brassica rapa and Brassica oleracea were used through resynthesis of a new Brassica
napus. Resynthesized (RS) oilseed rape is potentially of great interest for F1 hybrid
cultivar breeding because the effect of heterosis is higher in crosses of genetically
distant materials. However, RS lines are not suitable for direct use in breeding,
mainly because of the low seed quality (Szala et al., 2016). Our strategy was to
introduce double-low (00) quality traits into RS lines by crossing a 00-quality
restorer line with RS oilseed rape, followed by in vitro ME of F1 hybrids.
Subsequently, the desired and double-low DHs can be selected from the obtained
population (Szala et al., 2016, 2019). Currently, 00-quality semi-RS DH lines are
used for the development of F1 CMS ogura hybrids of winter oilseed rape.

The results of the field experiments in 2020/2021 with such new F1 hybrids are very
promising (unpublished data).

DHs have also been used in genetic marker development, QTL location, gene
mapping, gene transformation, and other genetic studies, in which homozygous
genotypes are required. Modern oilseed rape breeding relies on genetic molecular
markers that significantly increase selection efficiency, particularly during the early
stages of breeding. Using a DH segregating population of 250 DHs, the clubroot
resistance locus in the winter oilseed rape cultivar Tosca was characterized (Kopec
etal., 2021). Genetic mapping, structural genomics, expression analyses, and

Acta Societatis Botanicorum Poloniae / 2022 / Volume 91 / Article 9128 14
Publisher: Polish Botanical Society



Zur et al. / Non-Zygotic Embryo Formation

Figure 7 Regeneration of transgenic haploid winter oilseed rape. (A) Transformed
microspore-derived embryos (MDEs) on a selection medium supplemented with kinetin.
(B) Plantlet development from transformed MDEs on stable medium MS with kinetin and
timentin. Photographs from the archives of the Department of Oilseed Crops, Plant
Breeding and Acclimatization Institute — National Research Institute.

functional annotation led the authors to conclude that TNL gene (BnaA03g29300D)
duplication is most likely involved in clubroot resistance. Based on these results,

a functional marker will soon be developed for use in oilseed rape breeding and
identified using DH lines. Genetic markers for low linoleic acid content
(Mikolajczyk et al., 2010) and the restorer gene Rfo have already been implemented
in breeding practice. For many years, PBAI-NRI research on the construction of a
genetic map to identify QTL for erucic acid and glucosinolate content has been
conducted based on molecular analyses (SNP, SSR) of over 100 DHs
(Cegielska-Taras et al., 2015; Matuszczak et al., 2011).

Haploid structures are excellent materials for biotechnological manipulation and
specific gene transfer, for example, by Agrobacterium tumefaciens-mediated delivery
to haploid microspore embryos. A protocol for this has been developed in Tissue
Cultures Laboratory of Department in Poznan (Cegielska-Taras & Pniewski, 2011;
Cegielska-Taras et al., 2008).

The high effectiveness of our method in microspore-derived embryo (MDE)
regeneration and in vivo chromosome number duplication allowed us to participate
in innovative projects in which the transformation of microspore-derived embryos
with A. tumefaciens was used as a research tool. The main goal of the first project was
to apply ABII overexpression to plants to evaluate the pleiotropic effects caused by
such a change in expression under drought conditions. In this study, we generated
transgenic B. napus plants overexpressing the Arabidopsis thaliana ABII ortholog to
study the corresponding changes in the drought stress response (Babula-Skowronska
etal., 2015). The second project concerned the conservation of the role of the ABI1
gene ortholog in Brassicaceae (B. napus vs. A. thaliana) and duplicated ABII genes in
B. napus, with particular reference to the response to drought stress. DH transgenic
B. napus plants overexpressing the A. thaliana ABII ortholog were generated to
study the corresponding changes in the drought-stress response as well as the
cumulative effect of all BnaABII-like genes under drought conditions. The construct
was introduced into B. napus microspore embryos via Agrobacterium-mediated
transformation using the method described by Cegielska-Taras et al. (2008), and the
plants were developed on selective media (Figure 7).

Currently, in oilseed rape breeding, much attention is paid not only to seed yield and
oil content, but also to oil quality due to the increased nutritional value of oil for
human consumption (Gacek et al., 2017). Our institute was involved in a 5-year
program of the Polish Ministry of Agriculture for the enhancement of natural
antioxidants and bioactive substances, such as tocochromanols, sterols, and phenolic
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compounds, in oilseed rape. These studies were realized with the use of different
populations of DH lines specially obtained for this program (Cegielska-Taras et al.,
2016; Siger et al., 2015, 2018).

Oilseed rape seed meal is an important source of protein, but the presence of
anti-nutritional compounds, such as fiber and glucosinolates (GLS), still limits its
use as livestock feed. The population of DH lines developed from F1 hybrids
obtained by crossing DH M305 black seed x DH Z114 yellow seed has been used for
analyses of genetic variation of traits affecting the byproduct of oil production from
this crop, a protein rich in oilseed rape meal. The results suggest a large genetic
variation in these traits and the interrelationships among them. The analysis of
heritability and gene effects on the studied traits allowed the estimation of the
genetic background of these traits (Wolko et al., 2020). The same population (DH
M305 x DH Z114) of 78 DHs was used in the QTL mapping analysis to explain the
genetic basis of the characteristics affecting the quality of oilseed rape meal: protein,
fiber, GLS, and seed coat color. The aim of this study was to identify SNPs
significantly associated with interesting traits to determine candidate genes and
develop genetic markers that could be used in breeding programs to improve the
quality of oilseed meal (Gacek et al., 2021).

6. DH Production in Oat (Avena sativa L.) Through Distant Crossing

Obtaining oat DH lines is difficult, and the effectiveness of the technique highly
depends on the methods used and the genotype of the donor plants. Literature data
and research conducted at the Franciszek Goérski IPP PAS show that oat DH can be
obtained mainly by distant crossing via pollination with maize. However, this
method still requires optimization of the culture conditions, mainly during the
germination of haploid embryos, plant regeneration, and acclimatization to ex vitro
conditions, as well as restoring fertility (doubling the number of chromosomes).

The first experiments based on chromosome elimination were devoted to improving
the effectiveness of haploid collection and focused on several aspects of this process:
(i) genotype of donor plants, (ii) selection of a pollen donor plant, (iii) time between
emasculation and pollination, (iv) influence of auxin on ovary enlargement and
embryo production, (v) time between pollination and application of growth
regulators, and (vi) type of regeneration medium on embryo germination and plant
growth. The strong influence of the genotype was determined by Sidhu et al. (2006)
and confirmed by Marcinska et al. (2013), showing a large spread of values from
0.2% to 2.6% DHs per pollinated floret. For haploid oat production, maize (Zea mays
var. saccharata) pollen is usually used, with pearl millet (Pennisetum glaucum L.),
common millet (Panicum miliaceum L.), and sorghum [Sorghum bicolor (L.)
Moench] (Nowakowska et al., 2015) being less often used. The time between
emasculation and pollination seemed to significantly influence embryo production,
regardless of the oat genotype. According to Marciniska et al. (2013), pollination one
and 2 days after emasculation resulted in the production of 5.7 and 13 embryos per
100 florets, respectively. In addition, the influence of different growth regulators
[picloram, dicamba, gibberellic acid (GA;), and 2,4-dichlorophenoxyacetic acid
(2,4-D)] was tested for their capacity to induce caryopsis (Figure 8A) and embryo
formation (Figure 8B), but no statistically significant differences between applied
substances or significant Growth Regulator x Genotype interactions were observed.
However, Marcinska et al. (2013) noticed that although two applied auxins, dicamba
and 2,4-D, generated a similar number of enlarged ovaries and embryos, dicamba
treatment resulted in enlargement of ovary size compared to 2,4-D. Nevertheless,
2,4-D turned out to be more effective in converting embryos to haploid plants (1.4%)
(Figure 8C) as well as obtaining DH lines (0.5%), whereas dicamba treatment
resulted in 0.6% of haploid plants and 0.3% of DH lines (Figure 8E) (Warchof et al.,
2016).

The highest number of embryos were obtained with the application of growth
regulators starting at 2 days after pollination (10.4 embryos per 100 florets).
Extending this time to 3 or 5 days decreased the number of embryos obtained to 4.8
and 6.2 per 100 florets, respectively (Marcinska et al., 2013). As haploid oat embryos
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Figure 8 Oat (Avena sativa L.) doubled haploids (DH) production by distant crossing with
maize (Zea mays var. saccharata). (A) Caryopses after 100 mg L~! 2,4-D treatment.

(B) Haploid embryo isolated from ovary. (C) Germinated haploid embryo on 190-2
medium. (D) Oat chromosomes with tetrasomic addition of maize chromosomes.
Multicolor-genomic in situ hybridization: Maize genomic DNA labeled with
biotin-16-dUTP and detected with streptavidin-Cy3 (red), 45S rDNA labeled with
digoxigenin-11-dUTP and detected with anti-digoxigenin fluorescein isothiocyanate
(FITC, green) and telomeric repeat sequences directly labeled with Cy5 (magenta).
Chromosomes counterstained with DAPI (blue). (E) Maturing DH plants in the
greenhouse.

develop without an endosperm, but in co-culture with ovaries, the changes in the
content of phytohormones in ovaries during the development of haploid embryos
were measured (Dziurka et al., 2019). Significantly higher concentrations of
indolyl-3-acetic acid (IAA), trans-zeatin, and kinetin (KIN) were found in ovaries
with embryos than in those without embryos. Lower concentrations of KIN in
ovaries increased the efficiency of haploid plant production. The presence of
4-chloroindole-3-acetic acid, a hormone that has been proposed as an aging factor in
plants, was confirmed in ovaries without embryos. Because the endosperm usually
fails to develop, isolated haploid embryos must be cultivated in regenerating
medium. According to Marcinska et al. (2013), the 190-2 medium (Zhuang & Xu,
1983) was better than TL3 (Taira & Larter, 1978), with 41.2% versus 23.6%
regenerated embryos. Finally, 10 haploid plants (19.6%) on 190-2 and four haploid
plants (5.6%) were regenerated on the TL3. The most effective germination of
haploid embryos was observed in 190-2 medium with 9% maltose and pH 6.0 (9.1%)
(Warchot et al., 2018). Moreover, most haploid embryos germinated on 190-2
medium with addition of 0.5 mg L™! NAA and 0.5 mg L' KIN (Noga et al., 2016).
It has also been shown that light intensity during in vitro culture can significantly
affect the development of haploid embryos. A light intensity of 110 pumol m 2 s™!
resulted in the highest percentage of embryo germination (38.9%), conversion into
plants (36.4%), and DH line production (9.2%) when compared with lower light
intensities (20, 40, and 70 pmol m 2 s™!) (Skrzypek et al., 2016). Chromosome
doubling is an essential step in oat DH line production. Treatment of haploid plants
has been successfully performed using 0.1% colchicine solution (Marciniska et al.,
2013; Noga et al., 2016; Nowakowska et al., 2015). The most efficient method for oat
DH production through wide hybridization with maize has been described in detail
by Skrzypek et al. (2021).

In distant crosses within a specific Poaceae subfamily, for example, oat x maize, male
chromosomes are preferentially eliminated during early embryo development,
although the elimination of chromosomes may be incomplete. As a result, a hybrid
zygote is formed, and subsequently, an embryo and stable hybrid plants that retain
the single maize chromosomes are produced (Skrzypek et al., 2018). Among 138 oat
lines obtained, the presence of maize chromatin was confirmed in 66 lines (48%) by
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amplification of a PCR product (500 bp) produced with primers specific for
Grande-1 maize retrotransposons. Cytogenetic analysis using genomic in situ
hybridization confirmed the presence of whole maize chromosomes in eight lines
and the insertion of maize chromosome fragments in 20 lines. The obtained oat x
maize addition (OMA) lines contained one to four maize chromosomes (Figure 8D).
At the same time, all the lines tested had a complete set of oat chromosomes. More
precise studies have been undertaken to visualize the nuclear architecture of
interspecies hybrids (Idziak-Helmcke et al., 2020) as it may affect their genetic
stability and usefulness in the effective selection of traits desired in agriculture.

In the hybrid lines, the territories of maize chromosomes were observed to resemble
rather compact surfaces, indicating that they do not follow the typical oat Rabl
configuration distinguished by the clustering of centromeres on one side of the
nuclear envelope. Retention of the maize chromosome(s) (C4 plant), in addition to
morphological and physiological aberrations, may also affect the functioning of the
photosynthetic apparatus and increase the tolerance of the hybrids to drought stress.
The changes observed in the functioning of photosynthetic apparatus of hybrids
depend more on the particular maize chromosomes retained and their interaction
with the oat genome rather than on the number of preserved chromosomes alone
(Juzon et al., 2020).

Many years of research conducted at the IPP PAS in cooperation with Polish
breeding companies (DANKO Hodowla Roslin Sp z 0.0.; Hodowla Roélin Strzelce
Sp. z 0.0. IHAR Group and Matopolska Hodowla Roslin Sp z 0.0.) have resulted in
the introduction of about 500 oat DH lines to the breeding programs. In 2020,
DANKO Hodowla Roélin Sp z o.0. registered a new oat cultivar called ‘Huzar,
derived by DH technology in IPP PAS.

7. DHin Sugar Beet (Beta vulgaris L.): An Example of the Application of
Gynogenesis to Plant Breeding

Sugar beet (Beta vulgaris L.) is one of the most important industrial crops cultivated
mostly in zones of temperate climate (i.e., Central and Southern Europe, USA, etc.).
This crop ranks as the second largest source of sugar worldwide, accounting for
approximately 20% of world sugar production, and the largest source in Europe
(Eurostat & Cook, 2020). It is also used to produce a wide range of products,
including feed, bio-based products (pharmaceuticals, plastics, textiles, and
chemicals), and ethanol (Organization for Economic Co-operation Development &
Food and Agriculture Organization, 2020).

Since the nineteenth century, outstanding progress has been made in sugar beet
breeding. The technical progress, supported by attention to factors such as
agronomy, climate, and conventional and biotechnological breeding achievements,
contributed to noticeable taproot yield improvement, where the sugar content had
been increased from 8% to 18% in modern cultivars (Dohm et al., 2014; Stevanato
etal, 2019). The main conventional breeding strategy is based on the utilization of
heterosis through efficient production of F1 hybrids using monogerm male sterile
lines crossed with multigerm pollinators (Goska, 1999). Heterosis can be achieved
through crossing experiments to identify parental germplasm pools (Hallahan et al.,
2018). Due to the biennial life cycle, allogamy, self-incompatibility, and inbreeding
depression, the traditional production of inbred lines developed from heterozygous
plant material requires time-consuming and labor-intensive backcrosses
(Zhuzhzhalova et al., 2020). It takes at least three generations, which requires

6-7 years.

Attempts to induce haploids using in vivo methods began in 1943, but they did not
yield useful efficiency (Levan, 1945). As an alternative, the use of haploid and DH in
vitro technology enables the creation of numerous completely homozygous lines
from heterozygotes in a single generation (Sohrabi et al., 2021). To increase
competitiveness, breeding companies must be able to produce new cultivars within
the shortest period. In recent years, old cultivars have been rapidly replaced with
new ones. Competition between breeding companies leads to the situation that a
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cultivar that has been on the market for 4-5 years is considered old, which
necessitates the annual registration of new ones.

Research on obtaining sugar beet haploid and DH lines has been carried out at the
Laboratory of Cytogenetics and Breeding Methods in Plant Breeding and
Acclimatization Institute — National Research Institute (PBAI-NRI) in Bydgoszcz
Division since the end of the 1970s. Because in many agronomically important crops
the most popular and successful DH technology is based on anther or isolated
microspore in vitro culture, attempts at ME were made. However, only calluses and
roots were recovered, or the efficiency of plant regeneration was at a very low level
(0.02%), and the cytological analyses indicated diploids, which suggested a somatic
source for the recovered plants. Sugar beets were therefore considered recalcitrant to
ME (Goska, 1986; Rogozinska & Goska, 1976). A breakthrough came in the early
1980s with the production of gynogenic haploids using in vitro culturing of ovaries
or ovules, first reported in sugar beet by Hosemans and Bossoutrot (1983), and fully
accomplished in 1985 (Goska, 1985).

In the following years, research efforts by Goska (1997) have resulted in further
progress in sugar beet gynogenesis. An efficient protocol for DH production from
ovules was established and implemented in breeding practices in the Kutnowska
Hodowla Buraka Cukrowego Sp. z 0.0. (KHBC Sp. z 0.0.). The methodology includes
several steps. The first was the isolation of ovules and regeneration of haploid plants.
Genotype dependency is one of the most important factors affecting the efficiency of
the entire process. Cultivars of the same species have different gynogenetic
capacities, conferring the strongest limitation on the process, whereas other
environmental factors such as donor plant growth conditions, flower bud
morphophysiology, medium composition, and culture conditions can be optimized.
The best gynogenesis response was obtained when isolating the ovules from the
closed floral buds above the floral bud in the anthesis stage. The optimal medium for
embryogenesis is based on Murashige and Skoog medium (MS) (1962)
supplemented with 0.3 or 1.0 mg L™! BAP and 0.1 mg L™! NAA. Depending on the
genotype of the donor plants, the use of appropriate external conditions during the
embryogenesis induction stage for in vitro cultures enabled recovery of 31%
haploids. It has been confirmed that haploid embryos originate from unfertilized egg
cells or, less frequently, from synergids. The earliest stages of haploid embryo
development in vitro (until the globular phase) are similar to those observed during
in vivo embryo formation. Such direct embryogenesis without the callus phase is
beneficial in offering greater consistency. Plants obtained in this way have a specific
genotype, while plants obtained from callus organogenesis have different ploidy
levels with the possibility of somaclonal variation.

Because of meiotic abnormalities, which cause microsporogenesis disorders,
haploids were infertile. Spontaneous diploidization occurs in 10% of haploids, hence
the number of chromosomes needs to be doubled with an anti-mitotic agent such as
colchicine. The highest efficiency of diploidization (50%-100%) was achieved with
the double treatment of haploid floral buds with a solution of 0.65% colchicine along
with a single application of 1.3% colchicine. Based on morphological features, DH
plants from the same genotype showed intra-line stability, whereas diversity between
different lines was observed, especially in the second vegetative season. DH lines set
a small number of seeds, at the level of 1.1%-20.1% depending on the genotype.

Out of 109 DH lines, 29 produced seeds (26.6%). The limited number of seeds and
low seed vigor were caused by self-incompatibility and semi-lethal gene expression
in the homozygous configuration (Figure 9).

Further studies conducted in IHAR-PIB, financially supported by the Polish
Ministry of Agriculture and Rural Development, enabled the biological and
molecular characterization of haploids, DHs, and donor plants. For this purpose,
both ISSR and RAPD marker systems were used to analyze 30 maternal lines, 76
haploids, and 54 DHs (M. Goska, personal communication, 2016). The unique band
pattern characteristics of each tested genotype were determined. Among the
analyzed loci, we observed genetic differences between haploid lines recovered from
the same heterozygous maternal genotype but different ovules. This is the same as in
the case of DH lines. However, among haploids and DHs recovered from the same
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Figure 9 Gynogenesis in unfertilized ovule culture of sugar beet (Beta vulgaris L.). (A) Donor plant during field cultivation.

(B) Floral buds suitable for ovule isolation. (C) The ovule and the ovary. (D) Morphology of embryo sac with the unfertilized egg
cell before division. (E) The ovules on induction medium. (F) Haploid plantlets on regeneration medium. (G) Doubled haploids,
2 months after colchicine treatment and acclimatization to ex vitro conditions.

ovary, genetic similarity was very high, suggesting that little or no variation resulted
from the use of the anti-mitotic agent.

Despite the significant progress in gynogenesis, attempts have been made to further
increase the efficiency of this process. Currently, little is known about the cytological
or molecular mechanisms such as gene expression involved in the induction of
gynogenesis. In another study carried out at the IHAR-PIB, the participation of
arabinogalactan proteins (AGPs), known cell wall remodeling agents, in the
development and differentiation of cells and tissues during sugar beet growth in in
vitro cultures has been demonstrated (Wisniewska & Majewska-Sawka, 2007, 2008).
The addition of exogenous 2.5 ug mL~! AGPs to the liquid medium at the beginning
of the guard protoplasts stage had an important influence on callus organogenesis
induction. The effectiveness of the entire process increased from 6.8% (control) to
47.2% (AGP addition). AGPs showing a positive biological effect were found to be
rich in oligosaccharide epitopes recognized by the JIM13, MAC207, and LM2
antibodies. These results suggest that AGPs play an important role in the
development of sugar beet guard cell protoplasts and the organogenesis of
protoplast-derived calli. Therefore, it is advisable to analyze the presence and
distribution of AGPs and pectin structural motifs in ovules during in vitro culture.
Detailed examination of cell walls deposited by ovules during in vitro culture
revealed the presence and widespread distribution of AGP epitopes, such as LM2,
JIM13, and JIM8. Additional characteristics of these epitopes are yet to be
determined.

8. Haploids and DHs in Vegetable Crops

At the Department of Plant Biology and Biotechnology (formerly Department of
Genetics, Plant Breeding and Seed Science) of the University of Agriculture in
Krakow (URK), research on gametic embryogenesis was initiated in 1990 by Prof.
Barbara Michalik and co-workers. Early studies aimed at obtaining haploids in red
beets (Beta vulgaris L.) and focused on the evaluation of the factors influencing the
development of ovules isolated in vitro. These studies showed that the gynogenic
response depended mostly on the genotype, but also on the season, growth
conditions, and composition of the medium. Ovules mainly developed in deep-red
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calli, radicles, and cotyledons (Baranski, 1996) and only single plants were obtained.
Further research focused on the ability of sugar beet haploid and DH materials to
micropropagate and their stability at the ploidy level. Although beet plantlets are
sensitive to culture conditions, haploids often perform better than DHs, as
manifested by a 2-fold higher frequency of petiole and midrib explant regeneration
and a 3-fold higher regeneration rate (Klimek-Chodacka & Baranski, 2013).
Spontaneous ploidy changes were observed in prolonged in vitro culture of haploid
plantlets. After 2—4 year of culture, most of the micropropagated plantlets were
diploid or mixoploid. In three out of nine tested clones, approximately half of the
micropropagated plantlets were still haploid, and only one clone retained its original
haploid status (Klimek-Chodacka & Baranski, 2011). These results indicate the
potential of haploid beet materials for future improvements using novel gene
engineering techniques.

In carrot (Daucus carota L.), hybrid cultivars are produced using inbred populations
obtained after several generations of self- or sib-pollination, resulting in strong
inbreeding depression. Studies of gametic embryogenesis in this species have been
conducted since 1999. Anther culture has proven to be a poor haploidization
technique because of the high rate of callogenesis and somatic embryogenesis from
the anther walls (Adamus & Michalik, 2003). Therefore, we developed a protocol for
the induction of carrot haploid plants using female gametophytes (Kietkowska &
Adamus, 2010). Our study showed that the development of unfertilized carrot ovules
was possible after pollination with foreign pollen. Parsley pollen was found to be the
most suitable. Most plants obtained using our protocol were haploids and diploids
derived from parthenogenesis, as evidenced by homozygosity at three independent
loci based on isozyme and PCR analyses (Kietkowska et al., 2014, 2018).

Research on gametic embryogenesis has also been conducted for different members
of the Brassicaceae family. ME was induced in anther cultures and later in cultures of
isolated white cabbage microspores (Brassica oleracea var. capitata) (Figure 10A-D),
brussel sprouts (B. oleracea var. gemmifera), cauliflower (B. oleracea var. italica), and
radish (Raphanus sativus) (Adamus, 1993, 1994, 1998; Michalik et al., 2001).

The results of the induction of embryogenesis in the cultures of isolated microspores
showed that Polish breeding materials of cabbage (more than 50 different accessions)
had a rather low ability (none or a single embryo per 100 flower buds) to undergo
gametic embryogenesis (Adamus, 2001; Adamus & Samek, 2006; Adamus et al.,
2002). In addition, the low survival rate of the embryos obtained is a problem.
Application of a desiccation procedure to the embryos obtained using abscisic acid
(ABA) significantly improved the conversion of embryos into plants (Figure 10E,F)
(Adamus et al., 2002). Regardless of the problems at the culture stage, we were able
to obtain DH plants for all species tested, but the highest success rate was obtained
for cabbage. The DH cabbage plants were evaluated according to their homozygosity,
ploidy, trait uniformity (Figure 10G,H), and fertility (Adamus, 1998; Adamus &
Samek, 2006; Baranski, 2000; Combik et al., 2006). Next, DH plants were subjected
to self-pollination to obtain DH lines, which were further evaluated for their
antioxidant properties (Leja et al., 2006). Twenty-five DH lines were examined and
compared with the standards (two F1 hybrids) and parental genotypes. Significant
differences in ascorbic acid and phenolic content were detected among the tested
DH lines. Some DH lines showed a high content of ascorbic acid and soluble
phenolics, which was also accompanied by high antiradical activity. These studies
showed that with the use of protocols optimized in our laboratory, it is possible to
obtain and select valuable DH plants in cabbage. Recently, ME was also induced in
Brassica rapa L. subsp. pekinensis (Adamus et al., 2021). Using our protocol, DHs and
later DH lines were obtained and released to a Polish breeding company for further
evaluation (Adamus et al., 2017, 2018).

Research on gynogenesis in onion (Allium cepa L.) has been conducted since 1995 in
response to the need to shorten the breeding process of obligatory biennial crop
species. In vitro culture of whole flower buds (Figure 11A-C) gave positive results
(Michalik et al., 1997). Further studies have shown that the effectiveness of
gynogenesis in onion is highly dependent on the genotype and media composition
(Michalik et al., 2000). After determining the optimal parameters (flower bud size,
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Figure 10 Androgenesis in microspore culture of Brassica oleracea var. capitata L. (A) Inflorescence of cabbage, buds suitable for
androgenesis marked with an arrow. (B) First mitosis in isolated microspore culture marked with arrows. (C) Androgenic embryos.
(D) Regenerated plantlet. (E,F) DH plants after acclimatization. (G,H) DH lines in the field experiment.

Figure 11 Gynogenesis in whole flower bud culture of Allium cepa L. (A) Inflorescence of onion with buds suitable for gynogenesis.
(B,C) Gynogenic embryos (arrows) emerging from enlarged greenish or parchment ovaries plated on solid media. (D) Plantlet
regenerated from embryos. (E) DH plant after acclimatization. (EG) DH lines in the field experiment and bulb evaluation.

medium, light conditions, and regeneration conditions), haploid embryos were
obtained (Figure 11D,E). A major achievement was the development of a protocol
for diploidization of gynogenic embryos. This is a very important issue, as haploids
are sterile, and spontaneous diploidization is rare in onions (Bohanec, 2002).

The utilization of haploids for breeding depends on effective doubling of the genome.
Genome doubling was induced in vitro using four anti-mitotic agents, trifluralin,
oryzalin, amiprophos-methyl (APM), or colchicine at various concentrations.

The highest doubling efficiency, combined with the lowest side effects (toxicity and
vitrification), was achieved for embryos cultured on media supplemented with APM
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(Grzebelus & Adamus, 2004). The DH lines obtained were also assessed for their
suitability for hybrid breeding (Figure 11EG) (Adamus et al., 2005).

The Department of Plant Biology and Biotechnology, URK, has cooperated with
Polish breeding companies (PlantiCo, KHiNO POLAN, and Spdjnia Nochowo) for
over 30 years. Cooperation has focused on using modern biotechnological methods
to support breeding programs for vegetable crops. This research resulted in the
development of innovative methodologies for obtaining DH plants by ME for
cabbage and gynogenesis in the cultures of flower buds for onion. These
methodologies were improved in the following years. The resulting protocols for the
induction of DHs in cabbage and onion, as well as the plant materials obtained in
this study, were released for the breeding programs of these companies.

As a result of implementing the methodologies for haploid induction developed at
URK and based on the plant materials provided, breeding companies developed new
varieties of cabbage and onions, which were registered by the Research Center for
Cultivar Testing (COBORU) in Stupia Wielka, Poland. The register of COBORU
included two hybrid cultivars of onion: Warsa F1 (entry 2009, PlantiCo Zielonki)
and Wega F1 (entry 2017, Spojnia Nochowo), and three varieties of cabbage bred by
KHiNO POLAN: Korund F1 (entry 2012), Jasper F1 (entry 2017), and Opalo F1
(entry 2017). Following this registration, the seeds of these cultivars were introduced
to the national market for both professionals and amateurs. Moreover, in
pre-registration field experiments carried out in COBORU, another hybrid cabbage
cultivar (POLB1 - KHiNO POLAN) was developed based on our protocols.

This indicates that the methods developed are useful for breeding new cultivars.

All mentioned cultivars were also included in Katalog odmian warzyw kwiatow i ziét
[Catalogue of cultivars of vegetables, flowers, and herbs], and therefore are available
to producers of cabbage and onions on the European market. It is worth mentioning
that cabbage varieties Jasper F1 and Korund F1 are characterized by very valuable
features, such as tolerance to thrips (Thrips sp.), a dangerous pest with enormous
reproductive ability, serving as a vector of many viral plant diseases, and bacterial
and fungal diseases, in particular to alternariose (Alternaria brassicae) and downy
mildew caused by Hyalperonospora parasitica (Catalogue of Cultivars of Vegetables,
Flowers, and Herbs, 2020, pp. 126-127). Therefore, these cultivars are recommended
for use in organic farming (Rogacz, 2019; Zolnierkiewicz, 2019), as their production
can be carried out with the limited use of agrochemicals, which is crucial for
production of health-promoting foods and for protection of the environment.

9. Final Remarks

Research by Polish scientists has made important contributions to our
understanding of the complex mechanisms of diverse processes leading to doubled
haploid (DH) plant production (microspore embryogenesis, gynogenesis, and
distant hybridization followed by genome elimination). The studies have resulted in
the following conclusions.

» Knowledge of the mechanisms of microspore reprogramming and redirection
toward embryogenic development in triticale. This revealed the role of ROS as
signaling molecules involved in ME induction and the significant effect of
antioxidative defense efficiency on ME effectiveness. Together with data
obtained from (epi)genetic, hormonal, and proteomic analyses, it has provided
the basis for some practical improvement of in vitro culture protocols for other,
more recalcitrant crops (e.g., rye).

« Insights into the genotype-dependent molecular processes underlying the
formation of microspore-derived albino regenerants. The lack of PEP RNA
polymerase activity in plastids is associated with impaired chloroplast
differentiation during plant regeneration. It has been suggested that the
insufficient number of complete plastome copies might be a retrograde signal
that hampers correct plastid biogenesis and chloroplast differentiation in
albino-producing genotypes. This knowledge helps overcome the problem of
albinism in the androgenic culture of barley and other cereals.
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 Development of (i) methods of isolated microspore culture for obtaining many
DH lines of oilseed rape, triticale, barley, and rye, and (ii) the most efficient
method of oat DH production through wide hybridization with maize.
Moreover, the incomplete elimination of maize chromosomes resulted in the
formation of stable oat-maize hybrid plants. The obtained OMA lines showed
morphological and physiological aberrations, which affected the functioning of
the photosynthetic apparatus and could possibly increase the tolerance of the
hybrids to drought stress; (iii) an efficient protocol for sugar beet DH production
from ovules; and (iv) methods for DH production for several vegetable crops
such as red beet, onion, carrot, and some Brassicaceae species.

The implementation of the studies described has provided an invaluable tool to
shorten breeding cycles, improve breeding efficiency, and increase genetic gain. It is
possible to produce fully homozygous lines in one generation, accelerate the
development of cultivars with desired market traits, and obtain excellent haploid
plant material for basic research in areas such as molecular physiology, genomics,
gene expression, and genetic mapping.
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