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Abstract
The diversity of bryophytes in karst sinkholes has received little attention, and these 
habitats probably play a crucial role as refugia. In this study, bryophyte diversity af-
fected by different levels of human disturbance in five karst sinkholes was compared. 
A total of 132 species of bryophytes (17 liverworts and 115 mosses) that belong to 64 
genera and 30 families were recorded. The richness of the bryophytes in the natural 
sinkholes was significantly higher than that of the bryophytes in the sinkholes affected 
by tourism and used as farmland. Canonical correspondence analysis showed that soil 
moisture is one of the most important factors that affect the abundance of bryophyte 
distribution in the five sinkholes. Human activities, including agriculture, animal 
husbandry, and tourism development, reduce the bryophyte coverage of sinkholes 
and lead to soil moisture loss. Therefore, effective protection of karst sinkholes is 
required to maintain their original value for biodiversity conservation.
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Introduction

A sinkhole is a typical negative ground terrain; it is a small-to-large bowl-shaped 
depression on the surface of a karst [1]. The thermal inversion caused by the inverted 
terrain often keeps the interior of the sinkhole cold [2]. As a result, deep sinkholes 
may serve as microclimate refugia, especially for cold-adapted species vulnerable to 
climate changes [3]. Under continuous climate changes, the distribution patterns of 
many cold-adapted species have undergone tremendous changes [4]. In Europe, the 
refuge areas of cold-adapted species are primarily found at high elevations and lower 
latitudes and low to high elevations and higher latitudes [1]. Because of the narrow 
distribution of cold-adapted species, their survival depends to a large extent on the 
existence of appropriate microhabitats; therefore, their emergence is often limited to 
specific habitats (for example, gully forests and northerly rock groups) that can provide 
a place suitable for the sustainable survival of cool plant taxa outside the large climatic 
range [1,5,6]. Species distribution models indicate that, in response to persistent climate 
change, many cold-adapted plant species in Eastern and Central Europe will undergo 
range changes and may disappear from low-altitude areas [7]. Previous studies have 
shown that sinkholes are important refugia for many cold-adapted plant taxa, which 
could become space-for-time substitutions, and the buffering capacity of shelters 
increases in colder climates (higher elevations and latitudes) and colder (northward) 
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slopes [1]. Bátori et al. [8] found that the bottom of a sinkhole is usually inhabited by 
very rare species or those unable to survive in the surrounding habitats. Significant 
floristic differences exist between the bottom of a sinkhole and a higher slope. Many 
plants, especially cool-adapted species, are restricted to the bottom of the sinkhole, 
where more water is available; therefore, the bottom of the sinkhole has higher humid-
ity and soil moisture than at the top of the sinkhole [9]. For example, Dracocephalum 
ruyschiana from Eurasia may have maintained a viable population in a large sinkhole 
in northern Hungary, which is far from its main distribution [10]. The beech forests on 
Mecsek Mountains have a high chance of survival in deep sinkholes for longer periods 
[11]. As a result, sinkholes are also considered natural habitat islands, and they play an 
important role in reducing the rate of plant species extinction [11].

The development of sinkholes determines to some extent the high diversity and 
endemism of local biota; however, at the same time, they may also become endangered 
habitats, as they may lose their restoration characteristics because of changes in surface 
conditions [2]. The karst environment is extremely sensitive to human activities, and 
human interference and use of sinkholes to varying degrees may lead to the degrada-
tion of its environmental value, that is, the biological shelters will disappear [12]. In 
Slovenia, where sinkholes have been developed to meet agricultural needs or become 
landfills, such anthropogenic land degradation can have a significant negative effect on 
the fragile sinkhole environment [13]. Similarly, in some parts of Southwestern China, 
sinkholes have undergone tourism development or manmade destruction, followed by 
rapid degradation of the original landscape. The degradation of sinkholes is leading to 
the homogenization of vegetation, which reduces regional biodiversity [13]. Therefore, 
protection of the ecological environment of sinkholes is of great significance for the 
protection of plants, especially endangered species.

Bryophytes are widely distributed in nature. Most bryophytes, especially liverworts, are 
generally considered to be shade plants [14,15], which are very sensitive to changes in the 
environment [16]. As a result, bryophytes are often used as indicators of environmental 
changes [17–19]. The distribution of bryophyte species can reflect the environmental 
conditions of sinkholes [20], especially humidity. Pericin et al. [21] studied bryophytes 
at different levels in an Istrian karst doline and found that the distribution of bryophytes 
in the sinkhole showed a gradual change. Differences in relative humidity may have 
a greater effect on the distribution of bryophyte species, in which the influence of the 
microclimate in the location seems to be very important [21]. Often, bryophyte spe-
cies that are rare outside the sinkhole, such as Pedinophyllum interruptum, Lophocolea 
bidentata, Plagiomnium undulatum, and Thamnobryum alopecurum, are found at the 
bottom of a sinkhole because of the presence of more water and nutrition.

Few studies have been performed on the diversity of bryophytes in sinkholes, and 
these were mostly based on a single independent sinkhole. In addition, the microhabitats 
of dolines are not yet considered to be valuable hot spots of karst diversity, and so they 
are not specifically protected. In this study, we analyzed the bryophyte data from a 
karst sinkhole group in Southern China. The sinkholes with different levels of human 
interference were compared. Our results provide a basis for determining the protection 
of karst sinkhole resources. The following issues were addressed:

 ■ What is the overall diversity and distribution pattern of bryophyte species at various 
sampling points along the microclimate gradient in a sinkhole?

 ■ What is the distribution of bryophytes in sinkholes affected by differing levels of 
human interference?

 ■ What are the main environmental factors that affect the distribution of bryophytes 
in the sinkholes in the study area?

Material and methods

Study area

Our study area is located in a karstificated plateau in Guizhou Province, Southwestern 
China (26°46'21.83"–26°46'49.21" N and 105°52'46.35"–105°54'33.03" E). This area has a 
subtropical monsoon climate. The average annual temperature is 14.1°C, rainfall – 1,436 
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mm, and sunshine – 1,172 h. Abundant rainfall and suitable heat condi-
tions provide favorable natural conditions for the development of karst 
sinkholes [22]. We investigated five sinkholes developed in the 42-km2 
region with a distribution density of 0.17/km2, which is one of the highest 
in the world. The basic characteristics and habitats of studied sinkholes 
are listed in Tab. 1 and Fig. 1, respectively.

The Xiaochilong sinkhole (XCL) is located in a remote foothill; the 
top of the sinkhole is closed, and it is surrounded by steep potholes, and 
only a narrow and steep slope to the southeast is available for entering the 
sinkhole. The entrance to the bottom is rich with shrubs and trees, such 
as Viburnum chinshanense, Mallotus philippensis, Trachycarpus fortunei, 
and Cunninghamia lanceolata. Under the forest, abundant herbs and ferns 
are present. Because of the closure of the sinkhole, obvious changes were 
observed in temperature, humidity, and illumination along the slope from 
the top toward the bottom. The Dachilong sinkhole (DCL) is located at 
the top of the mountain and not far to the northeast of XCL; it is oval, the 
diameter of the mouth is 390 × 262 m, the top of the sinkhole is open, 
and the wall is upright and towering with only a gentle slope to the south 
for entering the sinkhole. The vegetation in the sinkhole is mostly shrubs, 
medium-sized trees, and herbs, such as Viburnum chinshanense, Cinnamo-
mum parthenoxylon, Holboellia latifolia, Eremochloa ciliaris, Pennisetum 
alopecuroides, and Lolium perenne. No sign of river activity was detected 
at the bottom of both DCL and XCL.

The Dacaokou (DCK) and Xiaocaokou (XCK) sinkholes are located in a 
canyon, and they are a part of the local tourist attractions. They developed 
as a pair, separated by a natural bridge, and surrounded by steep cliffs 
downstream of the Qijiehe River. They can only be entered along both sides 
of the river, where vegetation grows well and many tall trees, shrubs, and 
vascular plants can be observed, such as Pteroceltis tatarinowii, Pterocarya 
stenoptera, Swida macrophylla, Musa basjoo, and Begonia grandis. The top 
of XCK is oval, 325 × 180 m in diameter, and DCK can be found northeast 
of XCK, through the natural bridge. The top of DCK is a long strip, and it 
is one of the largest sinkholes in the world [22].

The Jiayandong sinkhole (JYD) is a single sinkhole and ellipsoid at the 
top. The sinkhole is seriously degraded, with no sign of river activity at 
the bottom and a rock wall on the west side. The bottom of the sinkhole 
has been used as arable land by the local residents for a long time. Natural 
vegetation can be found only in the uncultivated area at the top of the sink-
hole. A large cave opens under the eastern wall and narrows inward.

Sample collection

The fieldwork and sampling were performed in September and October 
2017, and we collected bryophyte samples from the five sinkholes. DCL 
and XCL were located in more remote areas with low accessibility, and 
we struggled to enter DCL along the gentle southern slope with the help 
of the locals. Taking into account the terrain and actual distribution of 
vegetation, we set up a sample point every 10 m for bryophyte collection. 
Finally, a total of 11 sample sites were set up in DCL, including the top, 
middle, and bottom (sample settings are shown in Fig. 2). A narrow stone 
slope road exists southeast of XCL, along which we smoothly entered the 
sinkhole. Bryophyte samples were collected from the top, middle, and bot-
tom, with a total of nine sampling sites. In contrast, the sampling of DCK 
and XCK was much easier. To develop tourism, a 104 m vertical elevator 
has been built at the bottom of DCK; we took the elevator directly to the 
bottom. Because these two sinkholes (DCK and XCK) are surrounded 
by stone walls, we collected samples only from the bottom. In DCK, we 
set up four sampling sites on both sides of the river to collect bryophytes. 
The bottom of XCK is divided into north and south banks according to 
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Fig. 1 The habitats of the five karst sinkholes. (A) The overlook of DCK (right) and XCK (left) sinkholes (photo credit: Zhijindong 
Cave Scenic Spot); (B) XCK sinkhole; (C) DCK sinkhole; (D) DCL sinkhole; (E) JYD sinkhole; (F) XCL sinkhole.

Fig. 2 Diagram of the sinkholes in Zhijin County of Guizhou Province. (A) after [22]; (B) after [22,56]; (C) after [22].
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the location of the river. Because the south bank is cut off by the river, only the north 
bank was used to collect samples, and we set up three sampling sites. The rock wall on 
the west side of JYD is missing, and, thus, the sinkhole is easily accessible; in addition, 
this slope is used as cultivated land by the local people. We set up six sampling points 
at the top, middle, and bottom. All five sinkholes were analyzed, and 185 bryophyte 
samples were collected.

At every sampling site, the light intensity was measured using a digital illuminometer 
(PM6612L; Huayi United, Shenzhen City, Guangdong Province, China); air temperature 
and humidity were measured with a handheld air temperature and humidity meter 
(HT-635; Guangzhou Hongcheng, Guangzhou City, Guangdong Province, China); 
soil temperature and humidity were measured using a soil temperature and humidity 
analyzer (TR-6; Beijing Shunkeda Technology Co., Ltd, Beijing, China); and the length 
and depth of the five sinkholes were measured using a handheld laser rangefinder 
(SW-1500A; SNDWAY, Dongguan City, Guangdong Province, China). All measure-
ments were performed for a week from September 25 to October 1, 2017. Each index 
was determined by repeatedly measuring five times to obtain an average value.

Specimen identification

Individual species were identified using traditional morphological identification tech-
niques, using an HWG-1 anatomical lens and a SMARTe-320 microscope, and reference 
to Flora Bryophytarum Sinicorum [23–31]. Voucher specimens were deposited in the 
bryophyte herbarium of Guizhou Normal University Bryophyte Research Laboratory 
(GZNUB; Appendix S1).

Data analysis

To quantify the effects of human disturbance on bryophyte diversity in the five karst 
sinkholes, we used the evaluation system of Kimberling et al. [32]. It mainly consists 
of four evaluation indexes, namely, areal extent, soil profile disturbance, time since 
disturbance, and frequency of disturbance. To understand the distribution structure 
and geographic composition of the bryophytes in the analyzed sinkholes, we classified 
them according to Wu’s distribution of Chinese plant genera [33]. The aspect to the 
north was recorded as 0 degrees and clockwise. The application formula TRASP = 
1 − cos[(π/180)(aspect − 30)]/2 converts the aspect from 0 to 1 [34]. The larger value 
after conversion indicates that the habitat conditions are hotter. Slope positions 0.4, 1.0, 
and 0.8 were assigned to the bottom, middle, and top positions, respectively [35]. The 
canopy was evaluated by processing the sample photos with Photoshop software [36]. 
In the formula ε = 1 − d/D, ε represents canopy, d represents the pixel value of the sky 
part of the selected area, and D represents the pixel value of the selected region.

The correlation between bryophytes and heterogeneous environmental factors 
was analyzed using canonical correspondence analysis (CCA). The significance of the 
environmental variables was determined using a forward selection with the Monte 
Carlo permutation test (999 permutations, p ≤ 0.05) [37]. The website Draw Venn 
Diagram [38] was used to prepare Venn diagrams of the bryophytes species in the 
five sinkholes. One-way ANOVA in SPSS 10.0 (IBM, Armonk, NY, USA) was used to 
determine the differences between the species abundances in the different sinkholes. 
A regression model for human disturbance and bryophytes species was established 
using PAST 3.2 (Palaeontologia Electronica, UK) [39]. A rank abundance curve was 
established to compare the relative species abundance in the different sinkholes by 
using ORIGIN 9.0 (OriginLab, Northampton, MA, USA). The relationship between 
the environmental factors (shown in Tab. 3) and bryophyte distribution was analyzed 
using CCA in CANOCO for Windows 5.0 (Cambridge University Press, University 
of Cambridge, UK).
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Results

Bryophytes in five sinkholes

A total of 132 species of bryophytes (17 liverworts and 115 
mosses) that belong to 64 genera and 30 families were recorded 
in five sinkholes (Appendix S1). The number of bryophytes 
corresponding to DCK, XCK, JYD, DCL, and XCL was 31, 34, 
19, 47, and 52, respectively. As shown in Fig. 3, XCL has the 
highest number of species shared with the other sinkholes: 14 
species with DCL, 10 with DCK, eight with JYD, and four with 
XCK. XCL also maintains a high number of bryophyte species, 
with 29 species specific to this sinkhole and accounting for 
42% of the total number of recorded bryophytes. XCK has the 
highest percentage of specific species, accounting for 64% of 
the total. JYD has the lowest number of specific species (only 
seven), accounting for 36% of the total. The bottoms of the five 
sinkholes have the highest species richness, and the abundance 
of bryophytes among sinkholes differed gradually: XCL > DCL 
> XCK > DCK > JYD. Among the five karst sinkholes, most of 

the liverworts, such as Chiloscyphus horikawanus, Heteroscyphus argutus, Marchantia 
polymorpha, Porella perrottetiana, and Porella campylophylla, are distributed at the 
bottom of the sinkholes.

Analysis of the floristic composition of the bryophytes

The bryophyte species found in the five sinkholes represent 10 types of geographi-
cal elements (Tab. 2). Most species represent the East Asia, Tropical Asia, and north 
temperate distribution types (22.72%, 21.97%, and 19.7%, respectively). In general, 
geographical composition reflects the subtropical characteristics of bryophyte flora in 
the karst sinkholes in the analyzed area.

Relationship between microenvironment and bryophyte distribution

The biplot (Fig. 4) clearly shows that altitude and soil humidity are the most impor-
tant variables that affect the distribution of bryophytes in the karst sinkholes. The 

Fig. 3 Venn diagram of bryophytes species in the five 
sinkholes.

Tab. 2 Geographical elements of bryophyte flora in the five karst sinkholes.

Areal types
Percentage 

(%)

The number of species in different sinkholes

Tourist Farmland Natural

DCK XCK JYD DCL XCL

North temperate 19.70 4 4 4 8 11
North temperate – south temperate disjuncted 1.52 - - - 2 -
East Asia i North America disjuncted 1.52 - - 1 - 1
East Asia 22.72 4 4 2 16 11
Pantropic 8.33 4 5 1 3 4
Tropical Asia 21.97 3 5 5 9 10
Cosmopolitan 7.58 1 3 0 4 3
Temperate Asia 3.03 1 - - - 4
Temperate Asian – tropical Asian elements 2.27 2 - - - 1
Chinese endemic species 11.36 1 3 2 5 6
Total 100.00 20 24 15 47 51
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explanatory content for the environmental factors is shown in Tab. 3. 
The bryophyte distribution in DCL, XCL, and JYD was positively cor-
related with canopy density, light, and slope inclination and negatively 
correlated with human disturbance. The bryophyte distribution in 
DCK and XCK was negatively correlated with slope inclination and 

positively correlated with position on the slope (bottom, middle, and top) and human 
disturbance to some extent.

Relationship between human disturbance and bryophytes

The rank abundance curve visually depicts both bryophyte species richness and spe-
cies evenness in the five sinkholes. In the horizontal direction, the species abundance 
is reflected by the width of the curve. Higher the abundance of the species, larger the 
range of the curve on the horizontal axis. The smoothness of the curve reflects the 
average degree of species in the sample; a smoother curve indicates higher evenness 
[19]. As expected, the sinkhole within the cultivated land (JYD) showed low relative 
abundance and diversity (Fig. 5). Furthermore, the evenness index showed a decreasing 
trend from the natural sinkholes to the farmland sinkhole.

In addition, we established a regression model to explain 
the relationship between human interference and abun-
dance of bryophytes in the five sinkholes, and it showed 
a significantly decreasing trend between the number of 
bryophyte species and human disturbance (Fig. 6).
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Discussion

Diversity characteristics of bryophytes in the sinkholes

After investigating the bryophytes in the five sinkholes in the study area, we found that 
the number and distribution of bryophytes were determined by large-scale and small-
scale environmental factors. As predicted, the sites with low light and high humidity 
were more suitable for bryophyte growth. The bottom of the sinkhole is often the place 
where bryophyte species are concentrated to the greatest extent, and most species 
are limited to the bottom of the sinkhole, such as liverworts (Porella perrottetiana, 
Plagiochila fruticosa, and Calypogeia arguta) and mosses (Climacium dendroides, Eu-
rhynchium longirameum, and Duthiella wallichii). However, at the top of the sinkhole, 
drought-tolerant, tenacious species are often found, for example, Hypnum calcicolum, 
Campylopus hemitrichus, and Didymodon asperifolius. Robinson and Wells [20], who 
studied bryophytes in limestone sinks of Michigan, found species not reported previ-
ously in Michigan, such as Mannia siberica, Seligeria calcarea, and Tritomaria scitula, 
and pointed out that the large distribution of bryophytes in sinkholes is related to low 
temperature, high relative humidity, and the matrix humidity. Usually, liverwort is 
better adapted to dark and humid environments than is moss [15,40]. In the five karst 
sinkholes, most of the liverworts are distributed at the bottom, where water is abundant 
and light intensity is low; this has a good conservation effect on the liverworts. Our 
results show that the bryophyte distribution is influenced by not only microhabitat 
factors such as temperature and humidity but also topographic factors. Toure et al. [41] 
believed that the effects of geomorphology on inversion intensity, diurnal temperature 
field, and vertical temperature gradient have a great influence on vegetation pattern and 
plant survival. Altitude gradient is one of the most common determinants for shaping 
the spatial pattern of species richness [42]. Our CCA results are consistent with these 
findings. In addition, we showed that the interactions among canopy density, light, 
and position at the slope together form a natural gradient that affects the distribution 
of bryophytes, resulting in their obvious vertical changes.

Value of a sinkhole as a refuge for bryophytes

Comparison of the local bryophyte flora characteristics in previous studies [43,44] 
showed that the bryophyte flora in sinkholes does not exist independently but is con-
sistent with the division of the regional system. Although the sinkhole flora is isolated 
from the outside world, the bryophytes in the five sinkholes are elements of the local 
flora [45]. The study area is mainly a plateau and mountainous area (87%). Lenoir et 
al. [46] found that, in the last century, mountain and small grass species changed more 
at optimal altitudes than did widespread and large woody species, underscoring the 
particular sensitivity of mountain (adapted to cool) species to climate change [47]. 
Cool-adapted species tend to occur in climatically diverse regions, where they would 
survive climatic fluctuations by tracking their preferred habitat [1,6]. The microclimatic 
environment of a sinkhole provides shelter for these species to grow and develop well 
without external disturbance. Jian et al. [48] found that the microhabitat is a factor 
that affects the stability of the plant community. Isolation of a sinkhole by steep rocky 
walls and its depth provide unique microenvironmental conditions, which are suitable 
for the growth of endemic plant communities. Our study proves that the microclimate 
gradient in karst areas may serve as a source of exceptional diversity of bryophytes and 
provide important habitats for local and relict taxa.

Influence of human activities on the sinkhole environment

In the context of global climate change, many species in karst areas have degraded or 
disappeared [49,50], and sinkholes provide shelter for these species. However, with the 
increase in human interference, the value of sinkhole shelters is gradually declining. 
Human disturbance had a significant effect on bryophyte diversity in the karst sinkholes 
(p < 0.01). This is mainly reflected by human activities such as agriculture and tourism 



9 of 12© The Author(s) 2019 Published by Polish Botanical Society Acta Soc Bot Pol 88(2):3620

Liu et al. / Bryophyte diversity in karst sinkholes

development, which reduce the coverage of sinkhole vegetation and lead to soil water 
loss. After the vegetation is destroyed, steep slopes will undergo soil erosion. The field 
study showed that the sinkhole with the cultivated land would undergo extreme drought 
if there is no rainfall for a long time. Almost no other vegetation, except crops, weeds, 
and mosses, is present in the cultivated land sinkhole. In addition, attention should be 
paid to the safety of crops in sinkholes. In Guangxi, China, many sinkholes have been 
proven to have a vertical enrichment of organic pollutants, which means that pollutants 
may accumulate at the bottom of the sinkhole [51–53]. Therefore, to protect the value of 
sinkholes as refugia for rare plants as well as for food safety, it is highly recommended 
to not use sinkhole areas as arable lands. After assessing the harmful effects of land-use 
change on the karst landscape of Slovenia, Kovačič and Barrage [12] found that 1/4 
sinkholes disappeared because of population growth and settlement area increase over 
the past 40 years and more sinkholes are on the verge of extinction. This is because of 
the vulnerability of the karst environment, which is a nonrenewable natural resource. 
Intensive human interference not only destroys its unique esthetic value but also leads to 
the degradation of its environmental value [12]. Plant communities and biodiversity are 
considered to be highly spatial variabilities controlled by both abiotic and biotic factors 
[41]. Many types of environmental changes may affect processes that can increase or 
decrease diversity [54]. Thus, understanding the patterns and processes that affect the 
spatial distribution of species is a fundamental issue in ecological protection [55]. As 
a unique habitat space, karst sinkholes have a high protection value for biodiversity. 
Therefore, it is necessary to establish an appropriate protection strategy for sinkhole 
refuges by understanding the effect of human disturbance on the biodiversity and 
different ecological processes in karst environments.

Conclusion

The distribution of bryophyte species diversity in sinkholes shows obvious vertical 
changes, and the distribution is affected by not only microhabitat factors such as 
temperature and humidity but also topographic factors. The microclimate gradient in 
a karst area may serve as a source of exceptional diversity for bryophytes and provide 
an important habitat for local and relict taxa. The number and species of bryophytes 
decreased obviously with the increase in human disturbance intensity. Intensive land 
use and tourism development have seriously threatened the existence of these unique 
habitats. We hope that effective measures will be implemented to protect this unique 
karst landscape.
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