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Abstract

The diversity of cyanobacteria and algae from various microhabitats in Spitsbergen is
comparatively well known. However, the relationships between environmental factors
and the structure of microflora communities remain largely unclear. This study was
conducted in Hornsund Bay, which exhibits large variability in the physicochemical
characteristics of habitats, particularly with regard to the availability of nitrogen
and phosphorus. This variability, to a large degree, is caused by seabird colonies,
which fertilize nutrient-poor terrestrial ecosystems near their nesting areas. The
large variations in ecological conditions and vegetation types in the study area aid
assessment of habitats representing different combinations of factors potentially
influencing the formation of cyanobacterial and algal assemblages. The aim of this
study was to examine the influence of physicochemical parameters on the taxonomic
composition and diversity of green algae and cyanobacteria (particularly the coc-
coid, oscillatorialean, and heterocystous taxa). The study encompassed two groups
of habitats — soil surface habitats and water-saturated habitats, both characterized
by diverse influences of seabird colonies, vegetation cover, and moisture. Our results
showed that taxonomic diversity and composition of cyanobacteria and algae were
mainly influenced by P-PO,*~, N-NH,* and Ca?* (soil surface habitats), and NO;™, as
well as moisture (index of wetness) and pH (water-saturated habitats). The variability
of these physicochemical properties was largely due to the variability of the seabird
colony influence. Taken together, our findings aid in understanding the processes
of formation of phycoflora assemblages in Arctic tundra.

Keywords
cyanobacteria; green algae; physicochemical parameters; nutrient limitation;
Arctic

Introduction

The taxonomic diversity of cyanobacterial and algal assemblages in the high latitudes
of the Arctic and Antarctic are well documented, particularly for the Antarctic [1-13].
Matuta [14,15], Oleksowicz and Lu$cinska [16], Oleksowicz et al. [17], Skulberg [18],
Davydov [19-22], Stibal et al. [23], Matuta et al. [24], Kim et al. [25], Komarek et al.
[26], Komarek and Kovacik [27], Pushkareva and Elster [28], and Raabova and Kovacik
[29] provided similar information for the Svalbard archipelago in the European part of
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the Arctic. These data suggest that cyanobacteria and algae are important phototrophic
components of biocenoses in almost all polar habitats. However, there is limited infor-
mation about how environmental factors influence the biodiversity of freshwater and
terrestrial algal microflora in polar regions.

Although several studies have indicated the influence of physicochemical parameters
of water and soil (especially the availability of nutrients) on the formation of cyano-
bacterial and algal assemblages [24,26,30-47], they do not address some important
issues. In the majority of the publications, the relationships between cyanobacterial and
algal assemblages and environmental factors are determined for specific ecosystems
or habitats, e.g., lakes, rivers, streams, soil, snow, and glacier. However, few studies
have compared different ecosystems, habitats, or microhabitats. There is also a lack
of studies investigating the effects of interactions of various factors on phycoflora as-
semblages. The importance of small-scale habitat heterogeneity for cyanobacterial and
algal biodiversity is not explored.

Unglaciated and periglacial areas of the Arctic and Antarctic are characterized by
chronic deficiency of nutrients such as nitrogen, phosphorus, potassium, magnesium,
and calcium. Over time, these extreme habitats undergo changes due to the input of
nutrients from various sources, e.g., from the decomposition of accumulated organic
matter from vegetation [48-52]. The intensity of these processes can vary considerably
on a local scale, thus causing high heterogeneity of ecological conditions. The area
of northern Hornsund Fjord, where the study was conducted, is a good example. It
is characterized by a high diversity of physicochemical and hydrological properties,
and vegetation types; the high variability in the concentration of nutrients (including
nitrogen, phosphorus, potassium, and magnesium) has been reported previously
[50-55]. Due to the substantial diversity of environmental conditions in this area, it is
possible to investigate a wide spectrum of habitats and the associated assemblages of
cyanobacteria and algae.

The aim of this study was to determine the taxonomic diversity and composition
of phycoflora assemblages in relation to environmental variables. We mainly focused
on the evaluation of the responses of cyanobacteria and algae (particularly green algae
and coccoid, oscillatorialean, and heterocystous taxa of blue green algae) to nutrient
enrichment caused by seabird colonies.

Material and methods
Study area

The study area is located on the plain of the raised marine terrace Fuglebergsletta and
in the Fuglebekken catchment area on the northwest side of Hornsund Fjord, in the
vicinity of the Polish Polar Station (Fig. 1). Part of this area is influenced by seabird
breeding colonies situated on the slope of Ariekammen. Samples were collected during
summer (July and August).

A total of 77 sites were selected (Fig. 1) to represent different habitats: crust and
mats on soil surfaces, shallow and slow current streams, shallow lakes, and water-
saturated sites with various types of Arctic vegetation. From each habitat, three to six
samples were collected depending on the size of habitat. The sampled habitats differed
considerably in terms of physicochemical properties, especially moisture and nutrient
supply (mainly nitrogen and phosphorus supply from different sources). For example,
habitats located outside the reach of seabird influence are usually very poor in nutri-
ents [46,47,49-52], whereas soil surface habitats often suffer water shortages, because
of typically long dry periods. On the basis of this differentiation, the studied habitats
were classified as follows:

Group I - soil surface habitats (within this group, there is a considerable variation
in the influence of seabird colonies and moisture):

= Sites 1-6 — mountain slopes under the influence of seabird colonies with Prasiola
crispa, Plagiomnium ellipticum, Sanionia uncinata, Tetraplodon mnioides, and

Dicranum sp. (Sites 1-3) or with P, crispa, Chrysosplenium tetrandum, Cochlearia

groenlandica, Poa alpina var. vivipara, Cerastium arcticum, Salix polaris, Plagiomnium
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Fig.1 The location of the study area in Hornsund Fjord, West Spitsbergen (A),
marine terrace Fuglebergsletta, and the Fuglebekken catchment area (B). Points 1-77
denote research sites (for detailed description see Tab. 1).

elipticum, Sanionia uncinata, Tetraplodon mnioides, Dicranum sp., and Brachythecium
turgidum (Sites 4-6), very dry;

= Sites 31-36 - patterned ground, 800-900 m distance from the base of Ariekammen
slope, periodically dried out;

= Sites 37-39 - the vicinity of the lateral moraine Hansbreen with initial stage of
cyanobacteria—-moss communities, moderately wet;

= Sites 46-48 — snowbeds and small depressions in the ground with cyanobacteria
crust, supplied with water from melting snow and rain, 850-900 m from the base
of Ariekammen slope, moderately wet.

Group II - water-saturated habitats (habitats in this group also differ in the intensity
of seabird colony influence):
= Sites 7-11, 23-27, 40-45, and 59-61 — moss-dominated vegetation areas: wet turf,
shallow streams, and erosive hollows with slow current waters, permanently sup-
plied with water;
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Tab. 1 Cyanobacteria and green algae composition in the studied habitats (Sites 1-77). Study sites are described in the text.

Species Symbol Sites

CYANOBACTERIA

Coccoid or colonial cyanobacteria

Aphanocapsa sp- 1 / densely dlstrlbuted cells Aph.spl 1-3,8,11, 42
W‘A;hanocapsa Sp- 2/ 1oosely dlstrlbuted cells ............ AphspZ ............ H H 49, 50 55 H
..“Al‘;hanocapsa sp- 3/ round cells ............ Aphsp3 ............ H H 7, 59 68- 70 72, 75
M;&:z')‘hanothece caldarlorum Rlchter - Aphcal ............ H 4, 6 43, 45 49- 51 53, 55 76, 77
Wz.“\:bghanothece cf. minutissima (W West) Kom -Legn. etAphmm ........... H 71-73

Cronberg
.N.A:l')‘hanothece clathmtaW etG S. West - Aphcla ............ H H 43—45, 65—67 H
.m;"{'z‘;hanothece mzcroscopzca Nag - Aphmzc ........... H H H 53—55 H
 Aphanothece sp.  aphsp e
W;Xuj;hanocapsa saxzcola Nag. - Aphsax ........... H H H 37- 39
..‘.A}hanothece stagnma (Sprengel) A. Braun inRabenh. Aphsm ............ H 20 21, 59 60- 62 65- 70 75
..‘.“G}’z‘lorogloea purpurea Geltler ............. Chlpur ............ H 43- 45
..‘.“G‘l;roococcus helvetzcus Nag e C hrhel ............. H H 4 6, 37- 39 74 |
W‘G‘l;roococcus minor (Kiitz.) Nag Chrmm ............ H H 50 |
..‘.“Giz‘roococcus minutus (Kiitz.) Nag I C hrmzz ........... 21 23, 28 30, 33 34, 40 49, 50 52— 55 59, 65 66, 68 70,

74

19 43 45

43 47, 54 55, 68 70, 74 79

Chroococcus varius A. Braun in Rabenh 71—73
Clastidium setzgerum Klrchner 62, 65
Gloeocapsa alpma (Nag ) Brand 49 53 55

33 35, 37 40, 43 45, 48 55, 73

44 45, 49 51- 55 59, 68 69 77

28 33- 36 40, 46 47, 49 51- 55 62— 64 74 75

21, 28-36, 40-48, 55-57, 59, 62—67, 69—71, 74, 77

Gloeocapsa sanguinea (Agardh) Kiitz. 74,77
..... G iaeocapsa tornenszs Sku)a 22 28 31- 34 36- 39 63
..... G iaeocupsa sp. 38—42, 74
..... G iaeocapsopszs cf. pleurocapsozdes (Novacek) Kom. et H 68—%0

Anag
..... G ioeothece cf. palea (Kiitz.) Rabenh 74, %7
W.G‘l'c‘)eothece sp. 1 4—6
““Me‘zrlsmopedza sp- 1—5
““Mamsmopedm cf marssoni Lemm H 9, 11;16
..... w;)ronchznza sp- 1/ small cells H 52, 54',‘ 59

40, 55, 60, 61

Woronichinia compacta (Lemm ) Kom. et H1ndak Wor.com 74

Heterocytous filamentous cyanobacteria

Calothrix cf. parletuna (Nag ) Thuret Cal.par 33-35, 47,51, 52, 54, 55, 57, 62-64, 68-70, 77

Calorhrix sp. 1 / spreading sheaths Cal.spl 43-45,59
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Tab.1 Continued

Species Sites
Calothrix sp. 2 / brown sheaths 50
Sacconema sp. 33- 36

40 42, 44 45, 49, 55, 62 67
lato

40, 43-45, 74
43, 44, 68, 69
28,45,57,70

33—40,48,70

31, 32 37

28, 30 33- 39 46, 47 49- 52 55, 61 63, 64 66, 67

40,43—45,49,55—57,68,69

71- 73

31- 37 46, 49 51, 77

50, 68 70

Tolypothrix tenuis Kiitz.

33 37 51- 53 55, 62 65— 67 74, 76 77

Nonheterocytous filamentous cyanobacteria

Geitlerinema acutissimum (Kufferath) Anagnostidis Gei.acu 4,7,8,20,21,23,55, 57, 59-61, 65-67, 69, 70
Glaucospirasp. Glasp sy
Wﬁ(')‘meothrzx cfm}ﬁlzana (Bornet et Flahauuls Kirchner Hom]ul ........... H H H 62— 64
.mk‘c')‘mvophoron'%mutum (Sku)a) Anagn. e'.;;[mKom ........... Kommzn .......... 8 10, 13 14, 21 43 44, 49 68- 70 72— 74 76 H
Wiue;blema epzpi&ﬁca (Hleronymus) Coméére .............. Lezepz ............. 69, 70 H
N‘.‘I:(‘z})tolyngbyaf‘(');eolarum (Raben. ex Goﬁ;ént) AnagnLepfov ............. H 4 5 8, ld 27,33, 34, 36 39 76

et Kom.

21,31—36,44—47,49—55,75,76,78
17, 21 28— 30 65, 67

4 6,7, 9 13, 18 21, 40 42, 52 62— 67 73

7 20 24, 33 36

21 22, 27 30, 62 63, 65 67

1-3

7—12,14,15,17—19,22,26,27,59—64,68
28— 30
59 61, 69 70

16

44, 45

1682628305657

etal.)

28-30, 32, 40, 45-47, 53-57, 63-68, 70, 72, 74-76

Oscillatoria cf. ornata Kutz et Gomont 71,73

Oscillatoria fracta Carlson 4,27
Mbgczllatorza ruuz;;fola Hansgl;g """ 4 H
““5;czllator1a saur'l;ta Kiitz. ex Gomont """ 44"
Mbgczllatorla spl / thin walls """ 50"
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Tab.1 Continued

Species Symbol Sites
Oscillatoria sp- 2 /long cels Osc.sp2 76
oscillatoriasp.3 Oscsp3 o
Oscillatoriasp.4 Oscspd 3739
Wégczllarorm subbrevzs Schmldle ............... Oscsub ............ H H H 4 H
Mégczllatorla tenuls Agardh ex Gomont Oscten ............. H H H 28- 30
Wl"l;ormzdzum amoenum Kutzmg ex Anagnost1d1s et Phoamo ........... H H 28 30, 37, 39
Komarek
Phormidiumsp1 Phospl S
Phormidiumsp2 Phosp2 4
Wl"lll:rmzdzum foveolarum (Rabenh ex Gomont) Anagrl ............ Phofov ............ H H H 27"
et Kom.
W}l;ormzdmm irriguum (Kutz ex Gornont) Anag.et P hozrr ............. H H H 28—30: 56
Kom.
Wﬁﬁam%@mdhmMMa@mmnKmnLget'Wwwﬁ;%l ............. H " i&SZéﬁ5u
Cronberg
ml"l;nctolyngbya contorta (Lemm ) Anag et Kom ............. Placon ............. H H 56 57, 62 65 H
.mlgéudanabaenacxnenanzLauterborn .............. lg;;él ............. 8 11, 19 26, 27 53, 55-57, 65 67, 71 73
W;;éudanabaenu cf. minima (G. S. an) Anag ............. P semm ............ 76
Wﬁ&dwm%wmﬁwmﬂﬁmKMAn%n mwww%éﬁl ............. H HZ9J41&3%4Q4%45
.mlgéudanabaenalnnnenca(Lennn) Konlu Hmm“mmlé;ﬁ;l ............. " H H5,6,2§,30 H
.mlgéudanabaenasp ............... lgégé ............. H H H SH
Mé;lﬂzothrzx cf. calczcola Gomont / aerophyt1c form Schcal ............. H H H 20, 21
.mé;lnzothrzx cf. calczcola Gomont/thln cells ............. Schca2 ............ H H 62 64, 68 70 H
Wé;lzzzothrzx cf. lacustrzs A. Braun ex Gomont / subaero—Schlal ............. H H 5, 40, 42, 43, 45, 49, 51
phytic form
mg;lzzzothrzx cf'lacustrzs A. Braun ex Gomont/ aero- Schlaz ............. H H 33—59, 46—48, 74—%7
phytic form
Ms;l’uzothrzx cf. lacustrzs A. Braun ex Gomont / plankton Sch.la3 H H ;ll, 42, .’-';3—55 H
form
3-6
33, 36
Symplocastrum sp. 1/ thin ﬁlaments Sym.spl H H | 6 40-45
..‘.;.S;Mplocastrum sp.2/ short cells .............. Symspz ........... H H | 20, 21
Wé;ﬁechocystzs sallensis Sku]a ................ Synsal ............. H H H 52"
CHLOROPHYTA
Desmids
Actinotenium sp- 37

29, 30, 56, 57

59— 61

20- 22 59- 62 68— 73

62—67

71- 76

20, 22 49, 50 52, 59 61, 68 74 76 77
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Tab.1 Continued

Species Symbol Sites
Cosmarium hornavaense Gutw Cos.hor 23-25,27,69, 70
Cosmarium laeve Rabenh. Cos.lae 62-67
..‘.Eck)‘smarzum norzmbergense Relnsch ............. Cosnor ............ 62—67
..Hé‘ck)‘smarzum parvulum Bréb. Cospur ............ 37—59
“Wé(')‘smarmm pokornyanum (Grunow) W et G S West Cospok ............ 37-39
Cosmarium sp- Cos.sp 74 76 77
..“6(')‘smarzum speczosumP Lundell Cosspe ........... i2 14- 16 18, 19 23, 24 26— 30 40- 45 52, 56 57, 68 70,
72, 73
.Wé‘(')‘smarmm subcostatum Nordst ............. Cossub ............ 37- 39
Cosmarium undulatum Ralfs Cos.und 8, 11 17, 19 59 61, 68, 69, 71 73, 77
Euastrum sp. Eua.sp 37, 39
W.M;zsotaemum . M essp ............. 4 H
.mé;c‘lumstrum brebzssomz Gutw .............. Stabre ............. 24—57
Staurastrum cf borgeanum Schmldle Sta.bor 68-70
Staurastrum sp- 1 Sta.spl 40- 42
 Staurastrum sp.2  Stasp2 810,11
* Staurastrum sp. 3  Stasps 68-70
Filamentous green algae
Klebsermidium cf. montanum (Hansg.) S Watanabe Kle.mon 4,5
““k‘l'ébsormzdzum o K lesp ............. 4, 5
..“M'l‘crospom pachyderma (Wllle) Legerhe1rn ............. M 1cpac ............ %, 9, 11,"12, 17, "18, 21—53, 25 H
Microspora tumzdulu Hazen Mic.tum 9,13,17,19-21, 28, 56,71, 72
W}’Hr't‘zszola crlspa (nghtf) Meneghml .............. Pmcrl ............. H 1—10," 12—15,"17—22,“28 H
..... &iéthrzx aequalzs Kiitz. Uloaeq | H 25, 26 H
Ulothrix cf. osczllarma Kutz Ulo.osc 26, 44
Ulothrix subtzlzs Kiitz. Ulo.sub 9 16, 19 20 21, 24 28, 56 72
..... i}l;,thmx " Ulosp . 6 ‘
Coccoid green algae
Not 1dent1ﬁed cocc01d green algae coc.gre 4-6
Gleocystis sp. 2 Gle.sp2 4-6
..“M'(‘momphzdzum cf. griffithi Kom Legh Mongrz ............ | 8,10, 11
mg;(‘)tzella antarctica Frltschf svalbardensst KoletS. . S coanf ............ 7,8, iO 14, 17 19, 28
Eurola
 Scotiella antarctica Fritsch  Scoant 7,911, 23, 24, 26, 27, 29-30, 74, 75, 77
Scotiella mvalzs (Shuttlew) Frltsch Sco.niv 7-9,11, 12, 14-16, 18, 74, 76, 77
mg;)tzella tuberculata Bourr. Scotub ............. H 7—1"0, 12—1'4, 17—1§ H
.mé;(‘)tzellopszs terestrzs (Rels1gl) Puncoch. & Kahna .............. Scoter ............. 7- 1"0, 12, 1'4, 18, lé
Scotiella oocystzformzs (Lund) Puncoch. & Kalina Sco.0oc 4,5
""" Tetracystis sp. T 4,6
Trochiscia granulata (Reinsch) Hansg. Tro.gra 56
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= Sites 16-19, 68-70, and 71-73 - puddles between mosses, permanently supplied
with water;

= Sites 12-15 and 20-22 - wet turf, permanently supplied with water;

= Sites 49-52 and 74-77 — moist areas with Saxifraga spp. community, permanently
supplied with water;

= Sites 53-55 — surface of coarse rocks and stones with cyanobacteria crust and Sanionia
uncinata, permanently supplied with water;

= Sites 28-30, 56-58, and 62-67 - ponds and lakes.

Microscopic analysis

Phytoplankton samples were collected using a 25-um mesh plankton net. For quantitative
analysis, 5 L of water was poured through the net. Periphyton samples were collected
from 20-cm? areas. All samples (plankton and periphyton) were collected using the
same sampling methods, for effective comparison of water environments. Species were
identified under a digital microscope (Nikon Eclipse TE 2000-S, Nikon, the Nether-
lands). The abundance of particular taxa was determined under the microscope using
a modified Starmach’s 6-point scale. Cyanobacteria and green algae were identified
according to the available literature [56-62].

Water and soil physicochemical analyses

Water and soil samples were collected in the summer (July and August). Surface water
samples were collected in acid-washed 500-mL polyethylene bottles. Before collection,
the bottles were rinsed with sampled water. Soil samples were collected in polyethylene
bags. After collection, both water and soil samples were transferred to a dark and cold
place as soon as possible. Electrical conductivity and pH of water samples (CPC-401
Elmetron, Poland) were measured in the laboratory shortly after sampling. Before
the next analyzes, water samples were filtered through nitrocellulose filters (0.45 pm;
Millipore; Merck, Poland). Water samples were analyzed in the Polish Polar Station’s
laboratory. NH,*, NO;~, NO,” PO,*, S-S0, K*, Ca*", Mg, and F concentrations were
determined by high performance liquid chromatography (HPLC) with a two separated
Metrohm Compact IC 761 System (Metrohm, Hensau, Switzerland). An analysis with
a suppressor was performed only for anions.

Soil pH and concentration of inorganic N forms were determined on fresh samples.
pH was measured at a soil:water ratio of 1:5 (w/v) (CPC-401 Elmetron). N-NH,* and
N-NO;~ were extracted by shaking for 2 h with 1 M KCI (1:5 soil:extracting agent) or
water (1:5 soil:water), respectively, and filtered through Whatman 42 filter paper (Merck,
Poland). The extracts were frozen at —20°C in order to store for subsequent analysis.
Soil water content was measured gravimetrically by drying in an oven at 60°C to a
constant mass. N-NH,*, N-NO;~, and P-PO,*" concentrations were determined using
a flow-injection analyzer (FIA-Compact, MLE GmbH, Germany). The remaining parts
of soil samples were air dried and sieved to remove coarse fragment, roots, and biota.
Dry samples were digested with nitric acid (65% pro analysis) and hydrogen peroxide
(30%) in an open system. The digests were then diluted with distilled water to 50 mL.
Soil Na*, K*, Ca*", and Mg** content was determined using FAAS (Avanta PM, Atomic
Absorption Spectrometer, GBC Scientific Equipment, Australia). The physicochemi-
cal properties of the studied sites are shown in Tab. 2. The following moisture scale
(index of wetness) was used to determine moisture of the soil and index of wetness for
water-saturated habitats: dry — 1, periodically dry - 2, moderately wet — 3, permanently
supplied with water i 4, wet - 5 (for water biotopes).

Statistical analysis

Statistical analyses were performed using the program CANOCO 4.5, and ordination
diagrams were created using CanocoDraw software [63].
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Tab.2 Continued

Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Min

Variable

Sites 74-77

Sites 71-73

0.00

0.00

0.00 0.00

0.00

mg L™
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0.00

NO*
NO;~

0.06

0.08

4.00 3.83

3.60

0.04

0.00

0.00 0.00

0.00

0.00

NH,"

0.00

0.37

1.17

0.00 0.00

0.00

0.00

SO

0.01

0.02

0.00 0.00

0.00

0.00

3.78

5.41 4.07

5.90

5.14

Cl

3.36

3.80

4.98

5.10 5.02

4.97

2.49

Na*

2.30

5.00

0.94

1.00

0.89

K+

0.00

8.64

13.07

48.41

52.00

43.24

Ca2+

5.00

2.40

5.00

1.80 1.68

1.59

Y
i

0.80

Reaction

7.49 8.00 7.66 6.68 7.28 6.92

pH

195.08 200.00 197.69 51.59 81.47 66.64

uS cm™

Conductivity

In order to determine the appropriate
technique of ordination, detrended corre-
spondence analysis (DCA) was conducted
[64]. The lengths of the gradients represented
by the first DCA canonical axes was >3 SD
for both analyzed habitat groups; therefore,
canonical correspondence analysis (CCA)
was chosen to assess the impact of habitat
variables on the cyanobacterial and algal
assemblages of the studied habitats. Forward
selection was used in order to determine
parsimonious subsets of significant explana-
tory variables for the species data and to rank
environmental variables according to their
importance in the ordination [63]. The statis-
tical significance of the CCA ordinations was
estimated using Monte Carlo permutation
tests (with 499 permutations) [63].

Shannon’s diversity index (H') [65] and
evenness index (J') were used to describe
species diversity.

Results

Diversity of cyanobacteria and green
algae in different types of habitats

In the first (I) group of habitats, the lowest
values of the diversity index (H') and even-
ness index (J') were recorded at soil sites
located on mountain slopes in the vicinity
of bird (Alle alle) colonies (Sites 1-3), i.e.,
at sites rich in nitrogen and phosphorus.
Low J' values result from the dominance
of nitrophilous Prasiola crispa, and from
low abundances of other taxa. The further
the distance from the nests, the higher the
diversity of cyanobacteria and green algae
observed. The highest diversity was recorded
at sites with the initial stage of cyanobacte-
ria-moss communities (Sites 37-39). In this
case, heterocystous species and an aerophytic
form of Schizothrix lacustris were the main
components of the phycoflora assemblages.
A relatively high J' index shows that these
communities are balanced (Tab. 2).

In Group IT habitats, a much higher spe-
cies diversity was recorded compared to
Group L. In the majority of the cases, both H'
and J'indices reached extremely high values,
suggesting the balanced nature of cyanobac-
terial and algal assemblages in these habi-
tats. The differences in biodiversity between
particular habitats of Group II are not as
clear as those in soil surface habitats (Group
I). However, a slight upward tendency can
be observed in the gradient of decreasing
seabird colony influence (Tab. 3).
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Tab. 3 Values of Shannon’s diversity index (H'), evenness index (J'), and the number of species for sampling sites. Grey
area — soil surface habitats, white area — shallow water habitats.

Sample  No. of spec. Diversity H' Evenness]'  Sample  No. of spec. Diversity H' Evenness J'

1 6 0.375 0.209 28 20 2.698 0.901
........ et 202 A s S
........ s 2 e i B

4 18 1856 0642 0 1 1 1.683 0.702H ............
........ et 2 R s e
........ e A e o 1 B
""" 3 s 1403 0872 43 15 243 0900
""" 2 s 1368 0850 4 2 200 093
""" B 16 1848 0667 45 2 28 0929
""" 1 1751 0683 49 15 249 0904

35 11 1760 0734 s l 3 2.220 0.866 ............
""" 6 0 14 1871 0709 51 198 0827
""" v o2 2120 0696 52 3 25 0905
""" ¥ 13 1914 0746 53 15 23 0884
.... 3916 2078 0749 54 15 2458 0908
""" 6 10 1487 0646 55 a0 2789 0916
""" 7D Lot 0660 56 u 27 0906
""" s 10 1571 0682 57 2 2 0935
........ et 2 A i B
........ . A2 S e o
........ et A0 A e B

10 10 1987 0863 o 1 O 2.272 0.98% ............
""" noo o1 2226 0868 62 7 21 0746
""" 2o 2150 089 63 4 1931 0732
...... —— s 2 2 0 S
""" I 2,240 0902 65 s 21 0739
""" 510 2,083 0905 66 6 2047 0738
...... e A2 0 e S

17 9 1958 0891 68 20 2.726 0.916 ............
""" 8 om 2013 089 a1 2466 0810
""" v 1 1811 0729 70 4 2808 0884
""" P 2281 o018 71 2 201 0893
""" a0 2729 097 7 16 2736 0987
""" 2 8 1769 081 73 15 2500 0927
""" 39 1886 0859 74 2 e 0926
""" u 7 1663 0855 75 u 221 0923
""" » 6 1661 0927 76 15 2597 0959
""" % 10 2,057 0893 77 16 28 0847
..... e 22 A2
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Cyanobacterial and green algal assemblages in

relation to environmental gradients

Group I - soil surface habitats. CCA showed that environmental factors significantly
affected the structure of cyanobacterial and algal assemblages. The eigenvalues for
Axes 1 and 2 were 0.986 and 0.341, respectively. The cumulative percentage variance
explained by these axes was 51.8% (38.5% + 13.3%). According to the forward selection
results, P-PO,*" (F=9.71, p = 0.002), N-NH,* (F = 3.79, p = 0.06), and Na* (F = 2.95,
p = 0.002) were the best predictors of species composition. Although other variables
(N-NOs, Mg*, Ca?*, K*, pH, conductivity, soil moisture, and organic matter) were not
included in the model, they might also have a significant influence on the phycoflora
assemblages because they strongly correlate with the best predictors.

Strongly eutrophic sites (1-6) were grouped on the right side of the diagram, i.e., at the
high concentrations of all nutrients. In Sites 1-3, a massive development of nitrophilous
green algae Prasiola crispa in the form of cracked lamelliform macroscopic thallus, ac-
companied by filamentous Klebsermidium cf. montanum, were observed. Among green
algae, there were loose filaments of Microcoleus autumnalis. The developing microflora
assemblages were characterized by low diversity, the dominance of one species (Prasiola
crispa), and a small contribution by other taxa, such as aerophytic cyanobacteria. At
Sites 4-6, a larger number of species were recorded, among which P. crispa, coccoid
green algae, and filamentous cyanobacteria were dominant.

In contrast, the Sites 31-39 and 46-48 (areas not affected by seabird colonies) were
situated on the left side of the diagram. They were characterized by considerably lower
concentrations of all nutrients and lower conductivity but higher values of pH and
humidity. Extremely low concentrations of nutrients, especially nitrogen and phos-
phorus, in these habitats qualitatively determine cyanobacterial assemblages. On the
CCA diagram, cyanobacteria and green algae species had a relatively wide dispersion.
In all these sites (31-39 and 46-48), the microfloral crusts were formed mainly by the
aerophytic form of Schizothrix cf. lacustris with a large contribution of heterocystous
cyanobacteria: Nostoc spp., Petelonema crustaceum, Sacconema sp., Tolypothrix tenuis,

1.0

Lep.sp1

Nos.pun

[
@ Mic.aut
Kle.mon

Lep.sp4
Mic.vag eP-SP4 - Aph.spi

-1.0 1.5

Legend

symbol — type of habitats

@ -Prasiola crispa assemblages (n=3)

O-P. crispa bl with Chr plenium tetrandum—Cochlearia groenlandica communities (n=3)
(O-patterned ground (n=6)

h

@-nitial stage of cy
©O-small depression on the soil with cyanobacteria crust and mosses (n=3)

eria—moss ities (n=3)

Fig. 2 Correlation triplot based on canonical correspondence analysis (CCA)
depicting the relationship between the main physicochemical characteristics
of the soil and the cyanobacterial and green algal assemblages. Site descrip-
tions are in the text. Full cyanobacteria and green algae taxa names are given
in Tab. 1. The diagram shows only the most important (forward-selected)
environmental variables.

accompanied by filamentous species Lep-
tolyngbya spp., coccoid Chroococcus turgidus,
and Gloeocapsa spp. At more humid sites
(46-48), snowbeds and small depressions in
the ground periodically supplied with water
from melting snow and rain, cyanobacteria
formed black and brown, thick, cylindrical,
nodular firm colonies, mats and leathery
crusts. They were accompanied by clumps
of mosses. At Sites 31-36, moderately wet
habitats on patterned ground, gray-olive
and brown thick crusts of cyanobacterial as-
semblages occurred. At Sites 37-39, crusts of
cyanobacterial assemblages with a large con-
tribution of desmids were found; although
they occurred in low abundance, it was a
distinctive feature (Fig. 2).

Group II - water-saturated habitats. CCA
results showed that environmental factors
significantly affected the structure of cya-
nobacterial and algal assemblages. The ei-
genvalues for Axes 1 and 2 were 0.623 and
0.488, respectively. The cumulative percent-
age variance explained by these axes was
13.6% (7.6% + 6%). According to forward
selection, the strongest effect was exerted by
NO;7, (F = 4.24, p = 0.002), moisture (wet
index), (F = 3.49, p = 0.002), and pH (F =
2.87, p =0.002).
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On the CCA diagram (Fig. 3), the main gradient (Axis 1) is related to the level of
eutrophication. On the right side of the diagram, there are fertile, ornithogenic sites
(7-19, 28-30, and 56-58 — wet turf, shallow puddles, streams, and ponds). This group
of sites is predominated by nitrophilous species Prasiola crispa, Microcoleus autumnalis,
and Phormidium irriguum (or Ph. amoenum in shallow ponds). The subdominant species
include Leptolyngbya valderiana, which is accompanied by Pseudanabaena catenata, P.
frigida, and morphospecies of the genus Leptolyngbya spp. In these habitats, a high diver-
sity of nonfilamentous green algae (Cosmarium spp. and Scotiella spp.) were observed.
In wet moss habitats, streams and ponds, there was a large abundance of filamentous
green algae of Ulothrix spp. and Microspora spp. genus (shallow pond, Sites 56-58). In
the center of the diagram, there are sites moderately and weakly influenced by seabirds.
This group represents mesotrophic habitats such as wet turf (Sites 20-22), moderate
current streams (Sites 23-27), and shallow streams (Sites 53-55). These habitats offer
optimal development conditions for the following cyanobacteria: Microcoleus autumnalis
(dominant; Sites 20-27), Leptolyngbya spp., and Oscillatoria fracta. Apart from that, a
large abundance of filamentous green algae of Ulothrix spp. genus (Ulothrix aequalis,
U. subtilis, and U. cf. oscillarina) were observed in wet moss habitat and streams. The
left site of the diagrams is occupied by oligotrophic and extremely oligotrophic habitats.
Cyanobacteria form assemblages, composed of distinctive species, and their quantity
in assemblages were significant. At the bottom of lakes and stream (mud, sand, gravel,
and fine stones), these species form thick and leathery crusts saturated with carbon-
ates. Those habitats are characterized by a high dominance of a few taxa (Schizothrix
cf. calcicola 2, Sch. lacustris 2, Pseudanabaena contorta, Microcoleus vaginatus, and
Leptolyngbya spp.). They are primarily accompanied by coccoid taxa, characterized by
a low contribution in cyanobacterial assemblages, e.g., large quantities of vast orange-
brown nodular thalli of D. gypsophila occur in the Gloeocapsa punctata | Gloeocapsa
sp. crusts at the bottom. The last group of habitats displayed in the diagram is the most
diverse, as it includes a shallow stream (Sites 43-45), a moist Saxifraga spp. community
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Symbol — type of habitats
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@-shallow streams (n=5)
O-pond (n=3)
O-shallow stream (n=3)

@ -cyanobacteria crust with Sanionia uncinata (n=3)
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©-moist Saxifraga spp. community (n=4)

Q-shallow stream (n=3)
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Fig. 3 Canonical correspondence analysis (CCA) depicting the relationship between
the main physicochemical characteristics of the water and the cyanobacterial and green
algal assemblages. (A) The ordination of species and physicochemical parameters on the
first and second ordination axes. (B) The ordination of species and sites on the first and
second ordination axes. Site description is in the text. Full cyanobacteria and green algae
taxa names are given in Tab. 1. The diagram shows only the most important (forward
selected) environmental variables.

(Sites 49-52, 74-77), puddles between mosses, and erosive hollows with slow current
waters (Sites 6870, 71-73). A high contribution of N,-fixing species of cyanobacteria
is a distinctive feature of these habitats. Benthic cyanobacterial assemblages in streams
and hollows were mainly formed by the dominant Microcoleus vaginatus, subaerophytic
Schizothrix lacustris 1, Symplocastrum sp. 1, Geitlerinema acutissimum, Leptolyngbya
valderiana and coccoid types Aphaocapsa spp., Chlorogloea purpurea, Gloeocapsa
biformis, G. compacta, and G. punctata. Codominants include heterocystous taxa of
Nostoc commune (three morphotypes) forming hard, large, flat, gelatinous colonies, as
well as Tolypothrix sp., T. tenuis, Petelonema crustaceum, Calothrix cf. parietana, and
Calothrix sp. 1 in firm mucilaginous baggy mats of various diameters.
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Discussion

The studied part of the northern shore of Hornsund Fjord (Fuglebekken catchment)
is characterized by a wide diversity of environmental conditions. It is well established
that, in this area, there is a high variation in physicochemical parameters of habitats,
especially in the availability of nutrients [46,47,49-52,66]. Migala et al. [55] also indicated
considerable ecological heterogeneity in this area in terms of humidity, microhabitat
temperature, soil type, and vegetation type. The studied habitats offer a wide spectrum
of environmental conditions for cyanobacteria and algae, thus promoting the develop-
ment of diverse phycoflora assemblages [11,24,26,30,31,33,66-69].

The growth of microalgae and plants in Arctic regions is limited by factors such
as temperature, water availability, and nutrient supply. Therefore, these parameters
are usually taken into account in studies focusing on the relationships between algae
or plants and habitat conditions (e.g., [26,70-73]). Some studies conducted in polar
habitats indicated the major influence of basic nutrients in the formation of cyanobac-
terial and algal assemblages [23,41,46]. Studies conducted in the Hornsund area also
confirm the major influence of physicochemical parameters, particularly the availability
of phosphorus and various forms of nitrogen (N-NO;", N-NH,"), on cyanobacteria
and algae. The level of these macroelements considerably diversified the studied
habitats and apparently was the main factor influencing phycoflora assemblages. This
is consistent with the literature showing that nitrogen and phosphorus are among the
main factors limiting the growth of plants and other organisms in the polar regions
[37,40,45,47,70,73,74].

The differences in the nutrient levels in Hornsund habitats are clearly associated
with the occurrence of birds. Herbivorous seabird colonies fertilize the nutrient-poor
terrestrial ecosystems by providing large amounts of organic material. Seabird guano
is a rich source of nitrogen (NO;", NH,*), potassium (K*) and phosphate (PO,*), and
affects other physicochemical properties, e.g., soil/water conductivity and reactivity;
thus, it is the most important driver of ecological conditions [49-52,65,72]. Hence, this
factor has a strong effect on the structure of plant and phycoflora communities in the
Hornsund Fjord area [46,70,71].

Depending on trophic conditions, soil and shallow water habitats are dominated
by two main types of phycoflora, highly contrasted in terms of species composition.
In oligotrophic habitats heterocystous species prevail (e.g., Nostoc spp., Dichothrix
spp., Calothrix spp., and Tolypothrix spp.). In habitats particularly poor in nitrogen
compounds, a significant (around 50%) increase of heterocysts in relation to vegetative
cells in filaments was observed. The important role of heterocystous cyanobacteria in
providing nitrogen to nutrient-poor polar ecosystems is well understood [43-45,74-77].
An analysis of nitrogen isotope (6"°N) from nitrogen fixation N, in soils under cya-
nobacteria mats [49] confirmed this role. The occurrence of heterocystous species in
nitrogen-poor habitats is correlated with the increased nitrogen demand on the soil
crust [28,78]. Cyanobacteria, compared to green algae, contribute less to microhabitats
fertilized by seabirds, which are rich in phosphorus, nitrogen, and other nutrients. In
the present study, Prasiola crispa dominates, accompanied by other nitrophilous green
algae and individual nitrophilous oscillatorialean cyanobacterial taxa (e.g., Microcoleus
vaginatus). The phycoflora of these habitats was shaped primarily under the influence
of phosphorus and nitrogen compounds, which occur in nitrate and ammonium forms.
The present study shows that high quantities of nitrogen (especially ammonium forms)
limits the diversity and quantitative development of cyanobacterial assemblages, whereas
in combination with abundant phosphorus compounds, they stimulate the growth of
green algae taxa.

Phosphorus is pivotal in nitrogen fixation. According to Madan et al. [42], nitrogen
availability is correlated with the presence of phosphorus in the tundra. Phosphorus defi-
ciency is observed in almost every soil type and it impedes ecosystem efficiency [79-81].
Areas under the influence of seabird colonies are unique for their high concentrations
of phosphorus in soluble and bioavailable forms [50,51]. The present study shows that
the role of phosphorus compounds increases in low nutrient (mainly nitrogen-poor)
habitats and those under the influence of herbivore populations (geese, reindeer).
Phosphorus provided by feces [52] stimulates the growth of Nostoc sp. colonies and
other heterocystous cyanobacteria on feeding, nesting, or resting sites of, particularly,
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geese. The rate of nitrogen fixation is remarkably increased by geese grazing [53], which
introduces phosphorus with feces and, consequently, stimulates growth of cyanobacteria,
particularly heterocysts. However, in the present study, biological nitrogen fixation was
inhibited by the high content of nutrients in the habitats under the cliff, where a large
amount of bird droppings were supplied by colonies of seabirds that nest there.

Phosphorus availability is also considerably dependent on pH [79,80], which is a
significant factor in shaping algal and cyanobacterial assemblages in the Hornsund area
due to its influence on macro- and microelements availability.

Humidity is another factor strongly influencing West Spitsbergen habitats, as
confirmed by research into the influence of water availability on the quantity and
placement of phycoflora (e.g., [4,25,48,67]). Humidity depends on topography (elevated
or flat areas, depressions) and areas with long lasting snow cover and/or stagnating
water provide suitable conditions for the development of cyanobacteria and algae,
consequently leading to high biodiversity. The results of the present study confirm
the significance of several correlated ecological factors and habitat properties on the
phycoflora of Hornsund Fjord.

Conclusions

The study conducted in various habitats in the Hornsund Fjord area indicates the influence
of physicochemical parameters on the structure of cyanobacterial and algal assemblages.
Statistical analysis revealed significant relationships between the distribution of species
and environmental factors (in particular, N-NH,*, NO;~, PO, and Ca** concentrations,
as well as pH and moisture). In nitrogen-poor habitats, dominance of heterocystous
cyanobacteria species is observed. In habitats rich in nutrients, the nitrophilous species
of algae are most predominant. Our findings add to the knowledge on the formation
of phycoflora assemblages under specific combinations of environmental factors.
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