
1 of 12Published by Polish Botanical Society

Acta Societatis Botanicorum Poloniae

ORIGINAL RESEARCH PAPER

Internal structure and photosynthetic 
performance of Nostoc sp. colonies in the 
high Arctic

Jana Kvíderová*
Center for Polar Ecology, Faculty of Science, University of South Bohemia in České Budějovice, Na 
Zlaté stoce 3, 370 05 České Budějovice, Czech Republic

* Email: jana.kviderova@objektivem.net

Abstract
The physiological performance of Nostoc sp. colonies in the high Arctic was inves-
tigated based on their structure and function. To investigate the internal colony 
structure, a method based on vertical stacking of individual light microscopy images 
was tested under the conditions at a polar field station. The physiological state of 
sun-exposed and shaded surfaces of the colonies was assessed using variable chlo-
rophyll fluorescence imaging under two distinct low- and high-light conditions. The 
3D image of the internal structure of the colonies revealed a high number of cells in 
the central part of the colony. Two peaks of maximum cell density were observed, 
probably caused by two overlapping colony lobes or subcolonies. Light was the 
driving factor of photosynthetic activity, and the colony structure played a role in 
the rate of response to incoming light. Fluorescence imaging revealed heterogeneity 
of the photosynthetic activity in the colonies, with the maximum photosynthetic 
activity at the colony edge due to better access to nutrients. The differences between 
exposed and shaded surfaces were not as pronounced as was expected, either due 
to good photoacclimation to a broad range of light conditions, light distribution 
through translucent extracellular matrixes, or integration of fluorescence signals 
throughout the colonies. The slightly better photosynthetic performance under 
high light conditions may indicate photoacclimation of Nostoc sp. to a broad range 
of light conditions encountered in the field.
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Introduction

In the Polar regions, algae and cyanobacteria are important, if not the only (in cases 
of specific and very extreme environments), primary producers in hydro-terrestrial 
and terrestrial ecosystems [1–5]. To survive in harsh polar environments, algae and 
cyanobacteria developed various mechanisms of adaptation/acclimation [5–7]. The 
strategies for coping with a stressor can be divided into stress tolerance, i.e., adaptation 
or acclimation to the given stress factor(s), or stress avoidance, i.e., escape from stressful 
conditions and/or insulation from surroundings [8].

One of the stress avoidance mechanisms is formation of consortia in which the 
central part is protected by surface layers. The consortia may be formed by one species 
(i.e., colonies, which are sometimes even macroscopic [9,10]), by several species (for 
example microbial mats [11] or soil crusts [12,13]) or, in the most extreme cases, by 
strictly symbiotic microorganisms (lichens) [14,15]. The structure of the consortia is 
similar for all types and consists of filamentous and amorphous components [16–18]. 
Furthermore, the ratio of the consortium components may reflect the species-specific 
internal structure, e.g., in lichens, or may be influenced by the environment, e.g., the 
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dependence of the amount of amorphous extracellular matrix in Nostoc sp. colonies 
on water availability [19].

These consortia are usually located at or near air-liquid, air-solid, or liquid-solid 
interfaces [16–18]. The area covered by a consortium may range from several µm2 to 
mm2 in the case of initial stages of Nostoc sp. colonies [9,20] or lichen development 
[21], respectively. In some cases, the area covered by a consortium can reach several 
dozen or even several hundred km2 in the case of microbial mats in permanently frozen 
Antarctic lakes [22] or marine benthos communities [23]. The thickness of consortia 
usually varies from the order of tenths of µm to tenths of cm [22,24–26]. Since the 
environmental conditions on exposed and shaded surfaces, and within the consortium 
are different, environmental gradients develop in consortia [27–29], and physiological 
responses should reflect the internal structure of the consortia. The exposed surface 
layers may be exposed to higher temperatures than those in touch with the substrate. 
The exposed surface layers are also subjected to higher irradiances. Finally, a nutrient/
water availability gradient develops inside the consortia, as the exposed superficial 
layers are subjected to nutrient deficiency, and air-exposed surfaces are also exposed 
to water availability deficiency.

Based on microscopic evaluation, the macroscopic colonies of Nostoc sp. (Cyanobac-
teria) represent a typical one-species consortium. However, application of molecular 
taxonomical methods revealed associated bacteria in macroscopic Nostoc sp. colonies 
[30], and therefore such colonies should be considered as multispecies consortia. Nostoc 
sp. colonies are an important source of carbon and nitrogen in polar hydro-terrestrial and 
terrestrial ecosystems [4,5,31]. Therefore, detailed knowledge of the interplay between 
the internal structure and the physiological performance of Nostoc sp. colonies, and the 
environmental conditions surrounding such colonies is crucial for the development 
of reliable models of Nostoc sp. primary production in situ. In this study, method to 
study the internal 3D structure of Nostoc sp. colonies was adjusted for using a light 
microscope, as the conditions at field polar stations (which include logistical challenges 
related to transport, and electric power supply, etc.) do not allow for the use of confocal 
or motorized light microscopes. The variable chlorophyll fluorescence imaging approach 
[32,33] was applied to determine the differences in photosynthetic activity between 
exposed and shaded sides of Nostoc sp. colonies under two distinct light conditions, as 
the exposed surface should be photoacclimated to higher irradiances.

Material and methods

Experimental site

The Nostoc sp. colonies were collected randomly at a seepage near the Nostoc Field 
Station of the Czech Arctic Research Infrastructure “Josef Svoboda Station” (78°40' 
50.268" N, 16°27'27.72" E, 4 m a.s.l.). Colonies of similar size (~1 cm2) were collected 
using tweezers and placed into a Petri dish. The Petri dish was immediately stored under 
dark conditions for dark adaptation for the fluorescence measurement. The original 
orientation of the exposed and shaded side of the colonies was maintained during 
sampling and transfer to laboratory at the station.

Internal structure

A series of 69 microscopic photo shots of one colony was taken using an Olympus 
BX-53 light microscope and a DP-72 digital camera (both Olympus, Japan) at 2-µm 
intervals at vertical axis. The shift in the vertical axis was performed manually. The 
microphotographs were processed using ProMicra 2.3 software (ProMicra, the Czech 
Republic). Further microphotograph processing, image analysis, and construction of 
the 3D structure was performed using ImageJ 1.54 software [34].

To obtain the vertical profile of the cell content, the percentage of coverage was 
used as a proxy. The individual color microphotographs were calibrated, converted to 
gray-scale images, and binarized. The coverage was calculated from binarized images 
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using ImageJ 1.54 software [34]. The binarized images were used for construction of 
the 3D structure. Mean and standard deviation were calculated for each 6-µm interval 
on the vertical axis.

Two different models were tested to fit the data using SigmaPlot 10.0 (Systat Software, 
USA). The one-modal model was based on a three-parameter Gaussian curve, according 
to the following equation (as defined by Systat Software, USA):

where D is the depth, C is the coverage, a and b are the parameters, and D0 is the depth 
where the maximum occurs.

The two-modal model was based on the sum of two three-parameter Gaussian 
curves, according to the following equation:

where D is the depth, C is the coverage, a1, a2, b1, and b2 are the parameters, and D1 and 
D2 are the depths where the maxima occur.

For 2D visualization of the mucilaginous sheaths and extracellular colonial mucilage, 
a drop of Indian ink was added to the microscopic specimen.

Photosynthetic activity

The photosynthetic activity of the exposed and shaded surfaces of five Nostoc sp. colo-
nies was measured on sunny (high light conditions, ~800 µmol m−2 s−1) and on cloudy 
(low light conditions, ~350 µmol m−2 s−1) days using a FluorCam FC-700 fluorescence 
imaging camera (Photon Systems Instruments, the Czech Republic). The data were 
processed using FluorCam 7 software (Photon Systems Instruments).

Before the fluorescence measurement, the colonies were subjected to 15 minutes of 
dark adaptation. The quenching protocol was applied as follows: the initial dark period 
for maximum quantum yield determination lasted 5 s when the saturation pulse was 
applied and was followed by 10 s of dark relaxation. The following red actinic light 
period of irradiance of 95 µmol m−2 s−1 lasted 60 s, and the saturation pulses were ap-
plied at 25, 37, 50, 62, and 75 s after the measurement was started. The short period 
of actinic light was selected to prevent colony heating during prolonged periods of 
measurement. After the actinic light period, a dark relaxation period lasting 20 s with 
one saturation pulse at 85 s after the start of the measurement was added. The intensity 
of the red measurement pulses was set to a maximum of 3 µmol m−2 s−1 and the pulses 
lasted 20 µs. The intensity of the white saturation pulse was set to 2,100 µmol m−2 s−1, 
and the saturation pulse lasted 800 ms.

The maximum quantum yield (FV/FM) was calculated according to the equation in 
Roháček et al. [35]:

where F0 is the minimum fluorescence in the dark, and FM is the maximum fluorescence 
after the saturation pulse in dark-adapted sample.

The effective quantum yield (ΦPSII) was calculated according to the equation in 
Roháček et al. [35]:

where FS is the steady-state fluorescence in the light before the saturation pulse, and FM' 
is the maximum fluorescence after the saturation pulse in the light-adapted sample.

The quantum yield in the dark relaxation period after the actinic light period (FV"/
FM") was calculated according to the equation in Roháček et al. [35]:
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where F0" is the minimum fluorescence before the saturation pulse, and FM" is the 
maximum fluorescence after the saturation pulse during dark relaxation after the 
actinic light period.

The nonphotochemical quenching (NPQ) was calculated according to the equation 
in Roháček et al. [35]:

where FM is the maximum fluorescence after the saturation pulse in the dark and FM' is 
the maximum fluorescence after the saturation pulse in the light.

The photochemical quenching (qP) was calculated according to equation in Roháček 
et al. [35]:

where FM' is the maximum fluorescence after the saturation pulse in the light, FS is the 
steady-state fluorescence in the light before the saturation pulse, and F0' is the minimum 
fluorescence immediately after the actinic light period.

The value of F0' was calculated using the approximation of Oxborough and Baker 
[36]:

where F0 is the minimum fluorescence in the dark, FM is the maximum fluorescence 
after the saturation pulse in the dark, and FM' is the maximum fluorescence after the 
saturation pulse in the light.

Statistics

The statistical evaluations were performed using Statistica 13.2 software [37]. One-way 
analysis of variance (ANOVA) was used to test the dependence of the coverage on depth. 
Two-way ANOVA was used to test the effects of structure and light on photosynthetic 
activity and rate of change of the photosynthetic parameters. The results were considered 
significant at p < 0.05.

Results

Internal structure

One sequence of 69 microphotographs was found to be sufficient to create a 3D image 
of the Nostoc sp. colony. The 3D internal structure (Fig. 1) revealed heterogeneity of 
filament distribution in the internal structure of the Nostoc sp. colony.

The vertical profile revealed decreased cell coverage on the surface of the colony 
(one-way ANOVA; n = 69, F = 30.73, p < 0.001) (Fig. 2A,B). Two peaks of maximum 
coverage were found at depths of ca. 45 µm and 85 µm from the exposed surface; 
therefore, the two-modal model (r2 = 0.941, F = 57.13, p < 0.001) (Fig. 2B) seemed 
to be better for description of the vertical profile than the one-modal one (r2 = 0.864, 
F = 66.89, p < 0.001; Fig. 2A). It is likely that there were two overlapping lobes of the 
colony (Fig. 3).

Photosynthetic activity

The fluorescence imaging revealed heterogeneity of the photosynthetic activity inside 
of individual colonies as well as among the Nostoc sp. colonies. The maximum photo-
synthetic activity was usually observed at the edges of the colonies, and the minimum 
in their centers (Fig. 4A,B).
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Fig. 1 The snapshot of the 3D internal structure projection of the Nostoc sp. colony, 
captured at the field station in Svalbard.

Fig. 2 Vertical profile of coverage (mean ±SD) of a Nostoc sp. colony. The 
means were calculated for 6 µm intervals, corresponding to cell diameters. 
(A) one-modal model; (B) two-modal model. 0 – exposed (upper) surface; 
maximum depth – shaded (lower) surface.
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Despite the heterogeneity, there was no statistically significant difference in F0 
(Fig. 4A). The light conditions played a more important role than the colony structure 
when considering their effects on fluorescence parameters FV/FM, NPQ, and qP. The 
FV/FM was affected by the colony structure, and shaded surfaces were in a better physi-
ological state than the exposed ones (Fig. 4B). As expected, the NPQ was higher and qP 
was lower under high light conditions. The absolute values of FV"/FM" were significantly 
affected by the colony structure. However, when the normalization to initial values of 
FV/FM was considered, the structure effects were not confirmed (Tab. 1).

Contrary to steady-state conditions, the rate of response of the photochemical light 
energy utilization (ΦPSII and qP; Fig. 5A,C) was influenced by colony structure only. 
The response to light was much faster and rapidly increased in the shaded surface of 
the colony. The NPQ was influenced by the light conditions only, and the response was 
faster under high light conditions (Tab. 2, Fig. 5B).

Discussion

The method of vertical stacking of individual light microscopy images proved to be 
suitable for determination of the 3D structure of Nostoc sp. colonies under the conditions 
at the field polar station. Although this approach is very time consuming and requires 
precise manual microscope control, its main advantage is minimum duration of sample 
transport and processing, as the prolonged sample storage and further transport to a 
specialized microscopy laboratory may affect the sample structure, or inadvertently 
change its orientation.

Using this approach, the 3D internal structure of the Nostoc sp. colony was visual-
ized. The maximum filament density, and hence number of cells, was found in the 
central part of the colony. Similar cell and filament distribution was described in Nostoc 
sphaeroides colonies [20]. Reduced numbers of viable cell at the consortium surface is 
a common protection strategy [38,39]. The superficial extracellular matrix layers may 
provide protection against desiccation and freezing [3,24,40–45]. The screening pig-
ments localized at the surface protect the cells against excessive radiation [46–48].

The vertical profile of the colony revealed two peaks of maximum cell density. This 
may reflect differences in morphology of experimental Nostoc sp. colonies and N. 
sphaeroides colonies [20]. Contrary to spherical N. sphaeroides [20], the experimental 

Fig. 3 Evidence of the overlapping lobes in the internal structure of a Nostoc sp. colony 
visualized using Indian ink staining.
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Fig. 4 The heterogeneity (A) of F0, used as a chlorophyll content proxy, and (B) of the FV/FM as a proxy of the physi-
ological status of the colonies.
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Nostoc sp. colonies were flat and several hundred µm 
thick. Colonies of different morphology may be found 
in different habitats, which either reflects adaptation to 
environmental conditions [49], or represents different 
Nostoc species [50,51]. The visualization of the mucilagi-
nous matrix revealed microscopic lobes or subcolonies, 
and their overlapping may result in the observed two 
peaks. These microscopic lobes or subcolonies have been 
previously documented in some Nostoc species [51].

Fluorescence imaging revealed heterogeneity of pho-
tosynthetic activity, which was highest at the edges and 
lowest in the colony centers. The higher photosynthetic 
activity could cover increased energy requirements, since 
the maximum growth was observed at edges of the colo-
nies, probably due to better access to nutrients, mainly 
nitrogen and phosphorus [52,53].

In order to avoid the effects of colony size on photosyn-
thesis [9,10], colonies of similar size were collected. Light 
was found to be the main driving factor of photosynthesis 
in Nostoc sp. colonies. The slightly higher FV/FM indicated a 
better physiological state of the shaded surface, apparently 
due to shielding by the filaments above. The lower FV/
FM at exposed surfaces probably cannot be explained by 
partial submersion of the colony in seepage water or by 
desiccation due to wind, since the colonies must lose at 
least 50% of their fully hydrated weight before a decrease 
in photosynthetic activity is observed [54,55].

Since up to ca. 90% of incoming radiation could be 
absorbed in a ca. 100 µm layer of Nostoc sp. cells [56] de-
pending on the colony structure, there should be distinct 
light conditions on the exposed and shaded surfaces. The 
different light conditions should lead to different patterns 
of light energy utilization that could be detected easily 
using the variable chlorophyll approach. In general, the 
effective quantum yield should be low, and NPQ should be 
higher on the exposed side, while on the shaded surface, 
the trend should be the opposite. Surprisingly, the light 
energy utilization in experimental colonies, expressed 

Tab. 1 Fluorescence parameters of the exposed and shaded surfaces of the Nostoc sp. colonies 
(mean ±SD, n = 5 in each group) under high- and low-light conditions. The ΦPSII, NPQ, and qP 
shown indicate the steady-state at the end of the actinic light period.

High light conditions Low light conditions

EffectsExposed Shaded Exposed Shaded

F0 193 ±49 a 233 ±43 a 271 ±82 a 242 ±84 a

FV/FM 0.464 ±0.051 ab 0.520 ±0.020 a 0.412 ±0.063 b 0.450 ±0.051 ab L/S
FV"/FM" 0.432 ±0.033 ab 0.482 ±0.023 a 0.404 ±0.032 b 0.442 ±0.047 ab S
% FV/FM 93.4 ±3.6* a 92.7 ±3.9* a 99.0 ±7.2* a 98.2 ±2.7* a

ΦPSII 0.246 ±0.034 a 0.226 ±0.009 a 0.248 ±0.033 a 0.272 ±0.047 a

NPQ 0.140 ±0.047 a 0.162 ±0.024 a 0.112 ±0.041 a 0.100 ±0.028 a L
qP 0.568 ±0.066 ab 0.470 ±0.020 a 0.642 ±0.073 b 0.636 ±0.053 b L

The superscript indicates homologous groups recognized by Tukey HSD test at p = 0.05. “Effects” 
column shows significance of effects of structure (S) and light (L) on the fluorescence parameters. 
L/S indicates that only L (light) and only structure (S) effects were significant, but not their combi-
nation. Statistical significance expressed as p values: p < 0.01 and p < 0.05 (denoted by an asterisk).

Fig. 5 The response of the fluorescence parameters (A) effective 
quantum yield, ΦPSII, (B) nonphotochemical quenching, NPQ, 
and (C) photochemical quenching, qP (mean ±SD, n = 5 in each 
group) to prolonged exposition to actinic light. The data were 
normalized to the values corresponding to the first saturation pulse 
during the actinic light period. Abbreviations: HL-E – high light, 
exposed surface; HL-S – high light, shaded surface; LL-E – low 
light, exposed surface; LL-S – low light, shaded surface.
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