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Abstract
There has been an increasing interest in understanding the differential effects of 
sexual dimorphism on plant stress responses. However, there is no clear pattern in the 
responses of the sexes to defoliation. In this study, the effects of different severity of 
artificial defoliation on biomass production, total nonstructural carbohydrate (NSC) 
concentration, and photosynthetic rate (PN) of male and female Populus deltoides 
were examined. We used half and full defoliation to observe the differences between 
the sexes in three harvest dates (1 week, 4 weeks, and 8 weeks after treatments). We 
hypothesized that female and male P. deltoides compared with an undefoliated control 
would have compensatory growth in response to defoliation treatments. Results 
showed that half and full defoliation reduced the growth of both sexes. Following 
half defoliation, root growth was reduced, especially in males, at T2 (4 weeks after 
defoliation) and T3 (8 weeks after defoliation), while males showed an increase 
in height increment under the half defoliation compared with the nondefoliation 
treatments. By contrast, females were more negatively affected by defoliation than 
males in terms of biomass after 8 weeks. One week after defoliation, PN increased 
significantly in females and males under half defoliation (+30%, +32%, respectively) 
and full defoliation (+58%, +56%, respectively). However, 8 weeks after defoliation, 
there was little difference in PN between defoliated and undefoliated female cuttings. 
Increases in stomatal conductance (gs) and leaf nitrogen were observed under fully 
defoliated female and male cuttings. Moreover, males had less NSC concentrations 
following half defoliation compared with females. Our results indicate that leaf 
compensatory growth in male cuttings of P. deltoides was maintained by obtaining 
greater photosynthetic capacity, higher leaf nitrogen, and lower NSC concentration 
following half and full defoliation. Our results highlight that females suffered from 
greater negative effects than did males following half defoliation, but under full 
defoliation, the differences between both sexes were subtle.
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Introduction

Defoliation caused by artificial pruning or insect herbivory can influence the growth of 
trees [1–3]. In Southwest China, annual mean temperature had increased 0.12°C per 
decade, and annual precipitation had slightly decreased during 1961–2010 [4]. This 
may result in increased insect damage [5,6]. Defoliation may have negative effects on 
tree growth by decreased leaf area and reduced carbohydrate supply [7,8]. However, 
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the influence of defoliation on the growth of trees is not always consistent because of 
the differences in frequency [9], severity, pattern [10], timing [11], and growth stage 
[12]. Following defoliation, plants seek to maintain leaf regrowth through compensa-
tory growth, which is defined as the restoration of morphological and physiological 
changes that occur in plants following defoliation [13]. Increases in photosynthetic 
rate commonly occur following defoliation [14], but there are also exceptions [15]. 
Although numerous studies have reported defoliation effects on plant growth, the 
physiological mechanisms driving these responses are unclear. It has been reported that 
defoliation causes decreases in nonstructural carbohydrates (NSC) that limits growth 
and survival [16,17]. Moderate and severe defoliation is known to result in reduced 
NSC concentrations [7,18–22], while light defoliation had no effects on NSC [23]. This 
implies the need for further studies on the response in trees subjected to different levels 
of defoliation to examine whether C limitation may explain the defoliation-induced 
growth reduction.

Dioecious plants are important components of terrestrial ecosystems. Approximately 
6% of angiosperm species (14 620 out of 240 000) are dioecious [24]. Populus deltoides, 
a dioecious tree species, is widely distributed in midlatitude region. Defoliation of 
Populus caused by insect herbivory or branch-pruning is common [25]. Sex-related 
differences in growth and plant physiological responses to the stressful environment 
have been extensively studied in Populus, and females usually show a lower tolerance 
to abiotic stress when compared with males [26–28]. One of the main physiological 
mechanisms behind stress tolerance is the carbon accumulation. We expected that 
the sex-related differences in NSC storage will mediate male and female P. deltoides 
responses to defoliation. We hypothesized that males show a greater ability than females 
to mitigate the negative effects of defoliation through compensatory mechanisms, but this 
speculation still lacks a direct test. Although there is abundant information on the male 
and female P. deltoides responses to environmental stress, there is little understanding 
of defoliation effects on their photosynthesis and growth. Such information is critical 
when developing models to predict the effects of defoliation events on the reproduction 
of Populus, with the increases in the frequency and intensity of defoliation caused by 
drought and insects in the future climate.

To gain insight into different responses of dioecious species to defoliation, we chose 
the industrial timber species, P. deltoides, which plays an important role in forestation 
and ecological restoration. We addressed the following questions: (i) does the sever-
ity of artificial defoliation influence the magnitude and duration of photosynthetic 
upregulation and NSC; (ii) do responses to defoliation differ between female and male 
individuals?

Material and methods

Plant material and experimental design

We collected the healthy male and female cuttings of P. deltoides from 60 different plants 
sampled from 15 populations (four adult trees per population) in the Communist Youth 
League farm in Jingkou District of Zhenjiang, Jiangsu Province, China. After 4 weeks of 
rooting and stable growth, the female and male cuttings were planted into 10-L plastic 
pots in a greenhouse at the Chengdu Institute of Biology, the Chinese Academy of 
Sciences (30°67' N, 104°06' E). During the whole experiment, the daytime temperature 
range was 18–28°C, the nighttime 9–15°C, and a relative humidity was 40–85%. Plants 
were well watered during the whole experiment periods. The soil was collected from 
a depth of 10–30 cm from the plot of forest plantation. On May 1, 2015, the female (n 
= 45) and male (n = 45) cuttings with approximately the same crown size and equal 
height to eliminate the substantial initial size variation were chosen and replanted in 
30-L plastic pots filled with 20 kg of homogenized soil of the same origin (one cutting 
per pot). The experiment lasted for 2 months from July to September.

The experiment was a completely randomized design with three factorial combina-
tions of defoliation, sex, and time. Three defoliation treatments were applied on July 
1, 2015: (i) D0, no leaves were removed, n = 15; (ii) D50, every second was removed 
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using shears, n = 15; (iii) D100, the leaves were removed, excluding apical buds, n = 
15. Growth conditions were consistent. We also had three different time periods of the 
treatment, namely 1 week after defoliation (T1), 4 weeks after defoliation (T2), and 
8 weeks after defoliation (T3). In each sampling time, we collected five cuttings per 
treatment per sex, a total of 30 cuttings.

Biomass

The heights and diameters were measured before harvest in T1, T2, and T3. At the start 
of the experiment, mean height and diameter of all cuttings were 60 ±5 cm and 4.3 
±0.4 mm, respectively. Thirty cuttings (five cuttings for each sex and treatment) were 
measured to explore the effect of the defoliation in each duration of the treatment (T1, 
T2, T3). The cuttings were divided into leaves, stems, and roots and then dried at 75°C 
for 48 h and their dry mass was determined.

Gas exchange and leaf traits

Five cuttings from each treatment per sex in each sampling date were selected for the 
measurements. One week, 4 weeks, and 8 weeks after defoliation, measurement was 
made on the fourth, counted from the top, fully expanded and exposed leaf from each 
cutting at a given time. The net photosynthetic rate (PN), stomatal conductance (gs), 
transpiration rate (E), and intercellular CO2 concentration (Ci) were measured with the 
LI-COR 6400 Portable Photosynthesis System (LI-COR, USA). All measurements were 
taken between 8 and 11 a.m. under the following conditions: a relative air humidity 
of 50%; the leaf temperature of 25°C; the molar flow rate of air through the chamber 
between 200 and 250 μmol s−1; leaf-to-air vapor pressure deficit 1.5 ±0.5 KPa; the CO2 
concentration of 400 ±5 μmol mol−1, and the photosynthetic photon flux density of 
1500 μmol m−2 s−1.

Total chlorophyll concentration was determined using a spectrophotometer (UV-330; 
Unicam, UK). After gas exchange measurements, fresh leaves were cut immediately 
and extracted in 80% (v/v) chilled acetone and quantified according to Lichtenthaler 
[29] at wavelengths of 470, 646, and 663 nm. Chlorophyll a and chlorophyll b were 
calculated from equations derived by Porra et al. [30].

Carbon and nitrogen contents in leaves, stems, and roots

Dry samples of leaves, stems, and roots were ground and passed through a 200-mesh 
screen. Concentrations of N and C were determined by the semi-micro Kjeldahl 
method [31] and the rapid dichromate oxidation technology [32], respectively. The 
total C to N ratio (C:N) was calculated as an estimate of the long-term nitrogen use 
efficiency [33].

Nonstructural carbohydrates

Nonstructural carbohydrate was defined as soluble sugars and starch concentrations. 
About 50 mg of the fine powder from the dried roots, stems, and leaves were placed in 
5 mL 80% (v/v) ethanol at 80°C for 30 min and centrifuged at 5000 g for 10 min. Ac-
cording to the anthrone–sulfuric acid method [34], the total soluble sugars and starch 
were estimated using 1.2% anthrone in concentrated H2SO4 as a reagent. Then, the total 
soluble sugars were determined colorimetrically (Multiskan GO 1510; Thermo Fisher 
Scientific, Finland) at 625 nm. The starch content was determined from the pellet of 
plant material that remained after the removal of ethanol [35]. Fructose and sucrose 
were examined colorimetrically (Multiskan GO 1510) at 480 nm following the modified 
resorcinol method [36].
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Statistical analysis

Before ANOVA, data were checked for normality and homogeneity of variance. We 
performed three-way ANOVA for the effects of defoliation, time, and sex to discover 
differences between sex response to defoliation using the R.3.3.2 (R Foundation for 
Statistical Computing, Vienna, Austria). Significant differences among treatment means 
were analyzed using Tukey’s multiple comparison post hoc tests. Group regressions 
were used to determine the effect of sex on the relationships of PN with gs and leaf 
nitrogen.

Results

Sexual differences in growth traits

For female cuttings, both D50 and D100 treatments significantly reduced diameter 
increment (Fig. 1b) but only D100 treatment significantly reduced diameter in male 
cuttings (Fig. 1d). Compared with D0, D100 had more pronounced negative effects on 
female and male diameter increment at T2 (respectively −80%, −61%) and T3 (respec-
tively −79%, −68%). Unexpectedly, compared with D0, D50 significantly increased the 
height increment for males at T2 and T3 (Fig. 1c).

Overall, the defoliation significantly decreased stem dry mass, root dry mass, total 
dry mass of males and females (Fig. 2), but females exhibited higher damage under the 
same defoliation at T3, showing that total biomass significantly decreased in females 
and males under half defoliation (−27%, −22%, respectively) and full defoliation (−69%, 
−61% respectively). Moreover, after 4 and 8 weeks, total biomass in males showed no 
difference between M50 (half defoliation of males) and M0 (nondefoliation of males), 
whereas males under M50 had less root biomass compared with M0. Although the 
specific leaf area (SLA) of both sexes was decreased by D50 and D100 at T2 and T3, 
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Fig. 1 Effect of defoliation on the growth of P. deltoides for each sampling date. Values are mean ±SE 
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the decreases of SLA of males were not significant under D50. Compared with the 
same sex individuals grown under the defoliation, the females exhibited significantly 
greater decreases in root biomass and total biomass than males under D50 and D100. 
In addition, Sex × Time × Defoliation interactions were significant in the case of stem 
biomass and SLA (p < 0.05).

Sexual differences in carbon and nitrogen accumulation

Compared with nondefoliation treatment, females under D100 treatment significantly 
increased N contents in leaf at the first harvest date (+64%) (Tab. 1, Fig. 3), while 
the defoliation had a tendency to decrease the leaf N in males. For both genders, the 
defoliation had significant effects on the N content, whereas there was no effect on the 
C content in roots and stems (Tab. 1). In addition, Sex × Time × Defoliation interac-
tions were significant in the case of the N content in stems and in leaves (p < 0.05). 
Furthermore, the C:N ratio in stems was significantly affected by the interaction of Sex 
× Defoliation (p < 0.05) (Tab. 1).
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Sexual differences in gas exchange parameters

For both sexes, there were increases in PN following defoliation (p < 0.05). After defolia-
tion at T1, PN in females and males increased significantly under half defoliation (+30%, 
+32%, respectively) and full defoliation (+58%, +56%, respectively). This photosynthetic 
upregulation was more pronounced in males than in females in each sampling date. By 
week 8 (T3), PN of female cuttings decreased sharply in D50 and D100 (−30%, −41%, 
respectively). However, upregulation of PN of the male cuttings remained across the 
periods of T1 and T2. Moreover, PN, gs, Ci, E, and chlorophyll a+b were all affected 
by the interaction of Sex × Time × Defoliation significantly (p < 0.05) (Fig. 4). Across 
all sampling dates, there was a positive relationship between PN and gs in females and 
males (y =12.60 + 0.93x, R2 = 0.67; y = 8.43 + 18.90x, R2 = 0.83) (Fig. 5a). In addition, 
there was a positive relationship between PN and the N content in leaves of females, 
which was not shown in males (Fig. 5b)

Sexual differences in nonstructural carbohydrates

In all sampling times, starch was the largest component of NSC in all organs (Fig. 6). 
Compared with D0, the soluble sugars concentrations in roots and stems of both females 
and males significantly decreased under D100 but no significant decreases under D50 
(Tab. 1, Fig. 6). Moreover, the soluble sugar concentrations in leaves of females were 
higher than in roots and stems (Fig. 6). Across all the sampling dates, D100 and D50 
resulted in significantly lower starch concentrations in both females and males. In addi-
tion, the starch concentration in stems of females was significantly higher than in males 
under the same treatment (Fig. 6). Compared with the same defoliation, the female 
individuals exhibited higher nonstructural carbohydrates than those in males under 
D0, whereas there were no significant differences in both sexes under half defoliation 
(Tab. 1, Fig. 6). In addition, the fructose concentration in roots, the sucrose concentration 
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females; F50 – half defoliation of females; F100 – full defoliation of females; M0 – nondefoliation of males; 
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in roots and stems, the starch concentration in 
roots, stems, and leaves were significantly affected 
by the interaction of Sex × Time × Defoliation (p 
< 0.05) (Tab. 1).

Discussion

Defoliation interferes with plant growth, but the 
effects of defoliation differ among plant species and 
may highly depend on the type and the severity 
of defoliation. Douglas fir under defoliation treat-
ments had the significant decreases in height and 
diameter growth [37], while artificial defoliation 
of Eucalyptus globulus only negatively affected the 
diameter growth [38]. Our results showed that 
there were significant differences in height growth 
of P. deltoides males and females when exposed to 
defoliation. Some studies reported that defoliation 
reduces the competition for light on the remaining 
leaves and also changes the spectral composition 
of light. Such a change in light quality results in 
morphogenetic (such as SLA) responses in plants 
[12,13]. Moreover, significant biomass reduction 
following defoliation have been observed as defolia-
tion limits carbon uptake by reducing the total leaf 
area, indicating that increases in photosynthesis 
cannot offset carbon losses [39]. Several studies 
have found that defoliation reduces growth due 
to nitrogen loss or water stress [22] but this is not 
the case in our study, as individuals in our study 
were well watered and fertilized. Besides, we found 
some evidence that defoliation increases the N 
content in roots and leaves (Fig. 3). For males 
under half defoliation, stem growth is favored at 
expenses of root [18], while for female under half 
defoliation, root growth is favored at expenses of 
stem. Males may maintain leaf regrowth by the 
increase in the allocation of reserves from root to 
shoot [40]. Zhao et al. [41] also found that medium 
defoliation results in the emergence of new leaves 
and stimulates relative growth rate through pho-
tosynthetic upregulation, as is also shown in the 
present study. Furthermore, our study shows that 
different severity of defoliation results in different 
extent and duration of photosynthetic upregulation. 
This is similar to Pseudotsuga menziesii [42] and 

Eucalyptus globulus [43]. The upregulation in photosynthetic rate increases with the 
severity of defoliation. Similarly, more severe defoliation results in a greater increase 
in the net photosynthesis rate than less severe defoliation [10]. Such photosynthetic 
upregulation allows species to compensate, to some degree, for the loss of leaf area 
[12,44]. Several authors have argued that partial defoliation decreases source:sink 
ratio and increases demand for carbohydrates to rebuild crowns [45,46]. Many other 
studies have shown that partial defoliation increases stomatal conductance [47–50], 
as our study shows.

Various mechanisms have been proposed for compensatory growth, such as higher 
photosynthetic rate or stomatal conductance [51]. Although leaf loss can lead to signifi-
cant reductions in stem biomass, root biomass, and total biomass [52–54], P. deltoides 
allocates more carbon to the aboveground biomass through compensatory growth. The 
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spiration (E), intercellular CO2 concentration (Ci), and total chlorophyll 
content (Chla+b) in the female and male individuals of P. deltoides as 
affected by artificial defoliation in different in three harvest dates. Val-
ues are mean ±SE (n = 5). Treatments: F0 – nondefoliation of females; 
F50 – half defoliation of females; F100 – full defoliation of females; 
M0 – nondefoliation of males; M50 – half defoliation of males; M100 
– the full defoliation of males. D – defoliation effect; T – time effect; 
S – sex effect; S×D – Sex × Defoliation effect; S×T – Sex × Time effect; 
D×T – Time × Defoliation effect; D×T×S – Sex × Time × Defoliation 
effect. The significance values of the factorial analysis (ANOVA) are 
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present study found that defoliation was partially 
compensated by increased photosynthetic rate 
[22]. To compensate for leaf removal, plant re-
quires large amounts of energy investment. Many 
studies have indicated that the rapid regrowth is 
highly associated with the changes in carbohy-
drates, C and N metabolism [55,56]. Compared 
with D0, we found that NSC concentration in 
individuals under D50 and D100 had decreased, 
as shown in other studies [7,55,56]. The decrease 
in total NSC was primarily attributable to the 
depletion of starch with defoliation treatment, 
which might in turn reduce carbon allocation 
to tree growth.

In conclusion, our study shows that severity 
of defoliation influences plant responses. The 
increase in photosynthetic rate increased with 
defoliation severity. There are sex-specific physi-
ological differences in defoliation between males 
and females of P. deltoides. Moreover, males 
and females showed compensatory growth of 
different extent following defoliation. Males of 
P. deltoides had a greater ability than females in 
compensation for the negative effect of defo-
liation through great photosynthetic capacity, 
high leaf nitrogen, and low NSC concentration, 
showing that males maintained higher height 
increment and less decreased total biomass than 
did females. Furthermore, the full defoliation 
induced lesser sex-specific differences in height 
increment, diameter increment, and NSC con-
centration than did the half defoliation. Our 
results suggest that sex-specific difference of NSC 
and N allocation may explain the differences in 
growth between males and females of P. deltoides 
under defoliation stress. However, long-term 
study is required to determine in depth sex-
related differences in resource acquisition and 
allocation under defoliation.
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Fig. 5 Relationship between net photosynthesis rate (PN) and stomatal conductance in female 
and male P. deltoides (a). Relationship between PN and the leaf nitrogen in female and male P. 
deltoides (b). Values are mean ±SE (n = 4). Relationships are shown only if significant (p < 0.05).

Fig. 6 Effect of defoliation on soluble sugars, starch, and NSC concentra-
tions in different organs of females and males under T1, T2, and T3. Values 
are mean ±SE (n = 5). F0 – nondefoliation of females; F50 – half defoliation 
of females; F100 – full defoliation of females; M0 – non-defoliation of 
males; M50 – half defoliation of males; M100 – full defoliation of males. 
Different letters indicate significant differences among treatments according 
to Tukey’s test at a significance level of p < 0.05.
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