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Abstract
Aerial parts and roots of Crithmum maritimum L. fertilized with Tytanit were 
investigated on the presence of phenolic acids (PhAs). Cinnamic and benzoic acid 
derivatives were quantified by use of validated RP-HPLC/DAD method. The amount 
of PhAs in fertilized plants (T) was higher than in control (C) plants (in the aerial 
parts: 2.16 mg/g and 1.28 mg/g dry weight, respectively, and in roots: 4.05 mg/g 
and 2.78 mg/g dry weight, respectively). The predominant PhA was the caffeic acid 
(83.2–94.2% of the total PhAs). After Tytanit treatment, amount of the caffeic acid 
rose from 667.41 µg/g in C to 1463.83 µg/g dry weight in the aerial parts of T, and 
in roots from 2251.74 µg/g in C to 3451.86 µg/g dry weight in T. Tytanit had also 
influence on the qualitative composition of PhAs; in extracts from aerial parts, some 
of PhAs (ferulic, chlorogenic, and syringic acids), absent in control, appeared after 
fertilization.
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Introduction

Crithmum maritimum L., sea fennel, rock samphire (family Apiaceae), is a perennial, 
halophyte (resistant to salinity), strong aromatic species found in the wild on maritime 
rocks, cliffs, and sands along the Atlantic, Mediterranean, and Black Sea coasts [1: p. 
333, 2: p. 367, 3–5]. In past times, sailors used to consume leaves of C. maritimum to 
prevent scurvy [6]. Nowadays, leaves of this plant are consumed fresh and pickled [7,8]. 
An infusion of leaves, which have a fennel-like aroma and taste, tonic and depura-
tive properties, is said to promote digestion and diuresis [8,9]. Also, insecticidal and 
antimicrobial properties of C. maritimum were confirmed [10–12]. Vitamins [7,13], 
minerals, flavonoids and catechins [3], proteins and amino acids [14,15], lipids and 
fatty acids [16], coumarins [17], acetylenes [18], essential oil constituents [19–22] in a 
sea fennel were detected before. Recently, content of flavonoids, tannins, and also total 
polyphenols in the different parts of C. maritimum was evaluated and the presence of 
phenolic acids (PhAs), i.e., benzoic and cinnamic acid derivatives, qualitatively analyzed 
by HPLC [3,23]. In vitro digestion model of antioxidant capacity of aqueous infusions 
from wild-grown C. maritimum was studied and chlorogenic acid and its derivatives 
were the most important class of polyphenols found in those extracts [24]. Several plants 
containing PhAs are widely used in phytotherapy. Various pharmacological proper-
ties of PhAs, e.g., antioxidant, antiviral, and cholesterol-reducing activity, make them 
potentially protective against cancer and coronary heart diseases [25–27]. PhAs inhibit 
angiotensin-converting enzyme and play important role in hypertension prevention 
[28]. They have also antimicrobial and antiviral properties [29] and, as components 
of the human diet in combination with antitumor drugs, can reduce side effects of 
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the anticancer therapy [30–32]. PhAs regulate tumor promoting metabolic pathways 
and can inhibit tumor development [33,34]. In plants, PhAs play role as phytoalexins 
and also perform defensive functions against pathogenic agents. [35]. Evaluation of 
phenolic acids in plants is therefore important from both phytotherapeutical and plant 
physiology perspective.

Titanium is one of the so-called “beneficial elements” for plants, i.e., chemical ele-
ments that improve the organism’s health status, but the organism can grow and healthily 
develop in their absence [36]. The titanium influence on plants has been investigated for 
almost 100 years [37,38]. As cited by Tlustoš et al. [39], in 1913, Traetta-Mosca observed 
that Ti enhanced the growth of tobacco plants, and it was found by Geilmann in 1920 
that Ti accumulates mainly in assimilation organs. First systematic research concern-
ing Ti effect on plants was done by Nemec and Kas in 1923 [40]. Authors observed Ti 
dose-response relationship; in some “optimal” concentration of Ti ions, plants became 
greener and growth and development of plants was intensified (chlorophyll content 
and leaf area was increased). However, at higher dose of Ti, the effect was opposite. 
These results were later confirmed by Hrubý et al. [41] in hydroponic experiments and 
by Radkowski [42] by experiments in the agricultural soil assigned to class I, wheat 
group of very good quality. Titanium feeding makes plants less vulnerable to adverse 
environmental conditions, improves their resistance against bacterial and fungal diseases 
[43]. The use of Ti significantly improves the health status of the plants and increases 
crops yields at a very low concentration, which was found to be non-toxic for animals 
and for humans [37,38].

Numerous theories on the mechanism of Ti action in plants were proposed and 
many of them are summarized in the reviews by Carvajal and Alcaraz [38] or by 
Hrubý et al. [41]. It was suggested that the biological effects of Ti were based upon the 
defense mechanisms of the plant organism against Ti; the low dose increases defense 
mechanisms and large (toxic) dose decreases them (hormesis effect) [41]. Because 
naturally occurring Ti is found in the form of minerals insoluble in water (e.g., TiO2 
or FeTiO3), it is unavailable to plants [44] and must be supplied in soluble form. Pais 
[36,37] found Ti(IV) ascorbate to be water-soluble compound which is pH stable (up 
to pH 8) and not toxic for the living system [38]. The enhancement of the biological 
functions of plants was induced by the cation Ti4+, whereas the anion (ascorbate) did 
not have any effect [45]. Successful experiments with Tytanit, the mono-component 
fertilizer which contains Ti(IV) ascorbate as an active compound, were performed previ-
ously [42,46,47]. In C. maritimum fertilized with Tytanit, the effect on qualitative and 
quantitative composition of the essential oil in the aerial parts was analyzed [48]. In the 
present study, in one-factor experiment, we analyzed for the first time the influence of 
the Tytanit on the composition of PhAs in C. maritimum L. aerial parts and roots.

Material and methods

Standards and chemicals

Phenolic acid standards (purity ≥98%, HPLC assay, Sigma-Aldrich, USA), methanol 
and acetic acid, chromatography grade (J. T. Baker Inc., the Netherlands), an ultrapure 
water (18.2 mΩ) from a Simplicity Millipore purification system (Molsheim, France), 
were used. All solvents were degassed in an ultrasonic bath. The other solvents and 
reagents were of analytical grade (POCH, Poland). Tytanit (Intermag, Poland), the mono-
component fertilizer, contains Ti4+ ions in amount of 8.5 g/L as Ti(IV) ascorbate.

Plant material

Crithmum maritimum L. (Apiaceae) was collected in the garden of Medical University 
in Gdańsk, Poland (where the voucher specimen was deposited) and was identified 
by KWR. The experiment was performed on an agricultural soil. One-year-old plants 
were cultivated from the same pool of seeds. Plant laboratory samples were prepared 
in accordance with European Pharmacopoeia (sixth edition) guidelines [49].

further details such as certification time 
and a signing reason in case any alterations 
made to the final content. If the certificate 
is missing or invalid it is recommended to 
verify the article on the journal website.
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Fertilization with Ti4+ ions

From two equivalent groups of cultivated plants, one was fertilized by spraying the leaf 
surface with 0.04% Tytanit water solution (T), the second, control group (C), was sprayed 
only with water (each time 200 mL per plant). Fertilization started when first leaves 
appeared, followed by every 7 days until the flowering starts. Plants were harvested 7 
days after last fertilization, washed with deionized water, and dried (3 days at 40°C). 
Aerial parts (1) and roots (2) of the plants (T and C), were ground and analyzed. The 
amount of phenolic acids was expressed as dry weight (DW) of the plant material.

Extraction of the plant material

Dried plant material (1/T and 1/C – aerial parts, 2/T and 2/C – roots; 10 g of each) 
macerated (24 h) and extracted – defatted (24 h) in Soxhlet apparatus with petroleum 
ether (200 mL) was next macerated (24 h) and extracted with methanol (200 mL at 
70°C). Free PhAs fractions were obtained as described previously by Ibrahim and 
Towers [50]. The methanol extracts, evaporated to dryness and dissolved in 100 mL 
of hot water, were left in a refrigerator for 24 h, filtered (quantitative filter paper type 
388, Whatman, UK), and water fraction (W1) was collected. W1 was extracted with 
diethyl ether (5 × 20 mL), next washed with 5% aqueous sodium bicarbonate solution 
(5 × 20 mL), acidified, extracted with diethyl ether (5 × 20 mL), dried over anhydrous 
sodium sulfate, and evaporated to dryness. Residue, dissolved in methanol, contained 
fraction with free phenolic acids. Water fraction W2, ca. 100 mL, obtained as a waste, 
was subjected to further hydrolyses.

Alkaline hydrolysis of esters and acid hydrolysis of glycosides

Acid and alkaline hydrolyses were carried out in accordance with the procedure de-
scribed by Schmidtlein and Herrmann [51]. For this purpose, water fraction W2 was 
divided into two parts (50 mL each) and used for acid and alkaline hydrolyses. Acid 
hydrolysis was performed in 36% HCl (pH 1.5) and alkaline hydrolysis with Ba(OH)2 
(pH 12) with a reductive medium containing NaBH4 (E. Merck, Germany) for 30 min 
at 100°C. Fractions after alkaline hydrolysis were acidified with 10% H2SO4 (to pH 1.5). 
Both fractions were extracted with diethyl ether (5 × 20 mL), dried over anhydrous 
sodium sulfate, evaporated to dryness, and dissolved in methanol.

Sample clean-up

Obtained fractions were evaporated to dryness under vacuum (50°C), dissolved in 
5 mL of 50 aqueous methanol, and passed through 0.45 µm PTFE membrane filters 
(Whatman, UK). The following samples were obtained: C-F and T-F – PhAs-free frac-
tions; C-AH and T-AH – PhAs released after acid hydrolysis; C-BH and T-BH – PhAs 
released after alkaline hydrolysis.

RP-HPLC analysis of individual compounds and UV spectroscopy

The chromatographic system consisted of Hewlett-Packard (USA) HP 1100 liquid 
chromatograph equipped with an AG 1315A UV-visible diode array detector (DAD) 
and Hypersil BDS C18 (250 mm × 4.6 mm I.D., 5 μm) column (Agilent Technologies, 
UK), and controlled by HP ChemStation rev. 10.0 software (Agilent). The reversed-phase 
high performance liquid chromatography (RP-HPLC) was performed according to a 
procedure described elsewhere [52]. Hypersil ODS C18 (250 mm × 4.6 mm I.D., 5 µm) 
column (Agilent Technologies) was used as the stationary phase. Methanol–water (20:80) 
with 1% acetic acid (v/v, temp. 25°C) was the mobile phase. UV spectra (λ = 200–400 
nm) of compounds were acquired on-line. Ten-μL samples were injected. Detection 
was performed at 254, 280, and 320 nm. The selectivity of the method and identification 



4 of 11© The Author(s) 2017 Published by Polish Botanical Society Acta Soc Bot Pol 86(3):3560

Bartnik et al. / Phenolic acids in Crithmum maritimum after Tytanit fertilization

of the compounds were achieved by comparison of tR values and UV-DAD spectra 
of compounds in analyzed samples and standards under the same chromatographic 
conditions. For quantitative determination, calibration curves for standards were 
prepared at 280 nm, except for cinnamic acid derivative, caffeic acid (at 320 nm), and 
benzoic acid derivative, vanillic acid (at 254 nm). The integration was done manually. 
Stock standard solutions were prepared by dissolving PhAs (1 mg of each) in 10 mL 
of 50% aqueous methanol (J. T. Baker). For statistical evaluation Student’s t test was 
used (p = 95%, α = 0.05).

Method validation

Method for quantitative evaluation of PhAs followed ICH guidelines [53,54] and was 
validated with respect to linearity, selectivity, sensitivity, accuracy (tested as recovery), 
precision (intra- and interday), and limit of detection (LOD) and limit of quantification 
(LOQ). Injection repeatability was validated by injecting aliquots of the same sample 
six times during a day, and the precision was validated by determination of relative 
standard deviation (%) of peak areas of six aliquots in the same day (in intraday tests) 
and on three consecutive working days (in interday tests). The calibration plots for PhAs 
(n = 3, at five concentrations) were characterized by their regression coefficients, and 
the slope (a) and intercept (b) form for the regression equation of (y = ax + b). LOD 
and LOQ for each PhA were calculated as follows; LOD = 3σa−1 and LOQ = 10σa−1, 
where σ is the standard deviation of the response and a is the slope of the calibration 
curve. On the basis of quantitative results, the percentage composition of PhAs was 
determined by assuming that the total amount (in µg/g DW) of the detected PhAs in 
each fraction constituted 100%.

Results

Method validation

Linear parameters for PhAs standards (regression equations, LOD, and LOQ) and 
retention times of PhAs from the analyzed samples in applied RP-HPLC method are 
listed in the Tab. 1.

RSD measured as injection repeatability was ≤2.6% and RSD as a measure of intraday 
and interday precision was in each case less than 5%. Accuracy measured as recovery 
for protocatechuic acid in samples 1/C-F, 1/C-AH, and 1/C-BH at three fortification 
levels (10, 25, and 50 mg/100 mL; n = 3) to water fractions (W1 and W2, respectively) 
showed (for applied multistep extraction procedures) satisfactory results, from 85.5% 
(1/C-BH samples) to 92.3% (1/C-F samples). The calibration plots for all the standards 
were linear (R2 ≥ 0.9996) in the concentration range 0.01–0.2 mg mL−1 for each PhAs, 
except for caffeic acid where concentration range was 0.02–1.0 mg/mL−1.

Analysis of the samples

In the analyzed C. maritimum L. extracts by RP-HPLC/DAD, the benzoic acid deriva-
tives, namely, protocatechuic, gentisic, p-hydroxybenzoic, vanillic, and syringic acids 
and the cinnamic acid derivatives, i.e., caffeic, p-coumaric, and ferulic acids, and the 
depside – chlorogenic acid, were identified and quantified. Fig. 1 presents HPLC 
chromatogram of an extract from roots (2/T-AH) determined at 280 nm. As we could 
observe, vanillic and caffeic acids were not separated to the baseline and therefore 
quantification was done for vanillic acid at 254 nm (at this wavelength, the peak of 
caffeic acid was not observed) and for caffeic acid at 320 nm (at this wavelength, the 
peak of vanillic acid was absent).

Fertilization with Tytanit had an influence on the amount of PhAs present in extracts 
in ester form (released after alkaline hydrolysis) and, interestingly, only a weak influence 
on the amount of the free PhAs and those released after acid hydrolysis. The total amount 
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of PhAs (HPLC/DAD-assay) in extracts from fertilized plants was higher compared to 
the control, 2.16 mg/g and 1.28 mg/g of DW in the aerial parts, respectively, and 4.05 
mg/g and 2.78 mg/g of DW in roots, respectively (Tab. 2, Tab. 3).

After fertilization with Titanit formula, the amount of the caffeic acid rose significantly, 
from 667.41 µg/g in control sample (1/C-BH) to 1463.83 µg/g DW in the aerial parts 
of fertilized plants (1/T-BH) (Tab. 2), and in roots from 2251.74 µg/g in control sample 
(2/C-BH) to 3451.86 µg/g DW in fertilized plants (2/T-BH) (Tab. 3), which was ca. 52% 
higher. In extracts from aerial parts, some of PhAs appeared after fertilization – ferulic 
acid in fraction of free phenolic acids (1/T-F), chlorogenic acid in fraction after acid 

Tab. 1 Linear parameters for PhAs standards (regression equations, LOD, and LOQ) and retention times 
of PhAs from the analyzed samples in applied RP-HPLC method.

No. Phenolic acid

Selectivity and sensitivity

Regression line (n = 3)

tR values in the 
chromatographic 
system tested (n = 6)

LOD 
(µg/mL)

LOQ 
(µg/mL)

1 Protocatechuic 5.776 ±0.024 0.045 0.137 y = 14.764x − 44..35

2 Chlorogenic 8.390 ±0.032 0.065 0.195 y = 20.006x − 6.32

3 Gentisic 8.522 ±0.020 0.024 0.068 y = 26.712x − 87.12

4 p-Hydroxybenzoic 9.592 ±0.021 0.037 0.113 y = 16.173x − 52.08

5 Vanillic 11.887 ±0.030 0.036 0.111 y = 14.766x − 32.52

6 Caffeic 12.363 ±0.053 0.020 0.062 y = 9.931x − 107.34

7 Syringic 13.985 ±0.034 0.010 0.029 y = 26.562x − 90.86

8 p-Coumaric 23.217 ±0.026 0.021 0.064 y = 28.724x − 97.18

9 Ferulic 29.531 ±0.038 0.007 0.020 y = 81.267x − 33.71

Fig. 1 RP-HPLC chromatogram (280 nm) of AH-T fraction from C. maritimum roots. Stationary phase: Hypersil ODS 
C18 (250 mm × 4.6 mm I.D., 5 µm); mobile phase: methanol–water (20:80) with 1% acetic acid (2/T-AH; acid hydrolysis 
after treatment with Tytanit). PhAs: protocatechuic (1), chlorogenic (2), vanillic (5), caffeic (6), syringic (7), p-coumaric (8), 
ferulic (9) acid; X – unidentified, with syringic acid-like DAD spectra.
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hydrolysis (1/T-AH), and syringic acid in fraction after alkaline hydrolysis (1/T-BH). 
Gentisic acid present in plant control as a free phenolic acid (1/-C-F) was absent in free 
phenolic acid fraction from fertilized plants (1/T-F). In roots, p-hydroxybenzoic acid, 
present only in traces in fraction after alkaline hydrolysis from control plants (2/C-
BH), rose to 15.01 µg/g DW in 2/T-BH plant extracts (Tab. 2, Tab. 3). The caffeic acid 
was the predominant phenolic acid in all investigated extracts in the aerial parts and 
accounted for: 49.6–50.4% (1/T-F), 61.5–61.4% (1/T-AH), 74.1–83.2% (1/T-BH), and 
in the roots: 62.8–64.3% (2/T-F), 60.8–58.7% (2/T-AH), 93.5–94.2% (2/T-BH).

Discussion

In a study by Maleš et al. [3], total polyphenol content in aerial parts of a sea fennel was 
relatively high (4.72–9.48%). As found (qualitatively) by Jallali et al. [23], free PhAs 
such as gallic, caffeic, chlorogenic, vanillic, rosmarinic, p-coumaric, cinnamic and 
2-hydroxy cinnamic acids were identified among other polyphenols (flavonoids and 
catechins) in C. maritimum from the natural source. Polyphenols were quantified by 
use of colorimetric method with Folin–Ciocalteu reagent and calculated as an equiva-
lent of a gallic acid. Meot-Duros and Magné [55] and also Jallali et al. [23] reported 
that antioxidant activities of extracts from C. maritimum are related to their phenolic 
composition. The polyphenolic content in C. maritimum varied in accordance to the 
phenological stage of the plant [23], increasing at the start of the flowering period; at 
this stage plants were harvested in our study. Extraction technique has a big influence 
on the phenolic content and composition. Soxhlet extraction, which was reported as an 
efficient method for obtaining PhAs from plants [56,57], was used in our experiments. 
As expressed by many authors [58,59], composition of the phenolics, and among them 
also phenolic acids, depends on both environmental conditions (temperature, humidity, 
exposure to light) and biological influences (e.g., insects and herbivores) [60]. Tytanit 
and its active component, Ti4+ ions, were investigated previously, and their effect on 
biomass production and condition of plants was confirmed [42,46–48]. In our study, 
we present the influence of Ti4+ ions on the production of PhAs. Titanium feeding, by 
its addition to the soil or by spraying onto the leaf surface, was previously investigated 
and discussed [42,61,62]. Hrubý et al. [41] revealed low Ti mobility within a plant 
when only roots were treated. Effects of Ti ions action when applied to leaves were also 
detected in fruits, resulting in fruits ripening [61]. Further enhancement of biological 
functions in Capsicum annuum was observed when Ti ions were sprayed on leaves 
[43], therefore we decided to use this approach in our experiments. Siracusa et al. [24] 
tested infusions from C. maritimum in gastrointestinal model. They found out that 
total polyphenol content and its antioxidant capacity decreased in digested samples. 
Therefore, it might be worth considering to stimulate production of polyphenols in 
plants used as antioxidants source. It could enhance therapeutic potential of treated 
plants and would be of big importance from the phytotherapeutical perspective, be-
cause, as was mentioned previously, C. maritimum is a promising source of phenolic 
bioactive compounds.

In conclusion, it is worth to stress that fertilization with Tytanit increases total 
content of PhAs in treated C. maritimum plants, especially the amount of caffeic acid 
bonded as esters.
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