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Abstract
Abscisic acid (ABA) plays critical roles in plant growth and development as well as 
in plants’ responses to abiotic stresses. We previously isolated VvWRKY13, a novel 
transcription factor, from Vitis vinifera (grapevine), and here we present evidence 
that VvWRKY13 may regulate ABA biosynthesis in plants. When VvWRKY13 
was ectopically expressed in Arabidopsis, the transgenic lines showed delayed seed 
germination, smaller stomatal aperture size, and several other phenotypic changes, 
indicating elevated ABA levels in these plants. Sequence analysis of several genes that 
are involved in grapevine ABA synthetic pathway identified WRKY-specific binding 
elements (W-box or W-like box) in the promoter regions. Indeed, transient overexpres-
sion of VvWRKY13 in grapevine leaves significantly increased the transcript levels 
of ABA synthetic pathway genes. Taken together, we conclude that VvWRKY13 may 
promote ABA production by activating genes in the ABA synthetic pathway.
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Introduction

Phytohormone abscisic acid (ABA) regulates a number of plant growth and develop-
mental processes including seed maturation and germination, stomatal movements in 
response to stress conditions, root growth, and leaf senescence [1,2].

In higher plants, ABA is synthesized via the terpenoid pathway that begins with 
isopentenyl diphosphate (IPP) converting into violaxanthin [1]. This initial step is 
catalyzed by zeaxanthin epoxidase (ZEP) encoded by the ABA1 locus of Arabidopsis 
[3,4]. Violaxanthin is converted to 9-cis-neoxanthin and is then cleaved into xanthoxal 
by 9-cis-epoxycarotenoid dioxygenase (NCED) [5–7]. Xanthoxal is converted to ABA 
aldehyde, which is catalyzed by a short chain dehydrogenase/reductase-like (SDR) 
enzyme, encoded by the ABA2 locus in Arabidopsis [8,9]. In the end, ABA aldehyde is 
oxidized to ABA by abscisic aldehyde oxidases (AAOs) [10]. Although ABA biosynthesis 
takes multiple steps catalyzed by several enzymes, NCED is considered to be the key 
regulatory enzyme in ABA biosynthesis [5,7]. On the other hand, the produced ABA 
is inactivated through ABA 8'-hydroxylation pathway, and the ABA 8'-hydroxylase 
is encoded by a small gene family with four members (CYP707A1 to CYP707A4) in 
Arabidopsis [11,12]. The level of active ABA in a particular tissue thus depends on the 
activities of ABA synthetic and hydroxylation enzymes. These enzymes are known 
to be regulated at multiple levels including transcription by transcriptional factors in 
response to variety of stress conditions.

More than 64 families of transcription factors (TFs) have been identified in plants 
[13] until now. WRKY proteins represent a large family of TFs that specifically interacts 
with W-box [(T) (T) TGAC(C/T)] or related sequences to activate genes [14–16]. While 
much of the work on WRKY family has been done in the model plant Arabidopsis 
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[17], little is known about the function of these TFs in crop plants. Recent studies have 
indicated that some WRKY transcription factors also participate in the pathway of ABA 
signaling and ABA production. The cotton WRKY transcription factor, GhWRKY17, 
increased sensitivity of transgenic Nicotiana benthamiana to drought. It achieved this 
by reducing the level of ABA and transcript levels of ABA-inducible genes, including 
AREB, DREB, NCED, ERD, and LEA [18]. AtWRKY33 acted upstream of NCED3/
NCED5 to negatively regulate ABA biosynthesis in Arabidopsis [19]. Recent studies 
also characterized several WRKY genes in cultivated grapevines and Chinese wild Vitis 
pseudoreticulata. All of them have been shown to regulate biotic or abiotic responses 
[20–26], but there has been no report about grapevine WRKY transcription factors 
affecting the ABA signaling and ABA production, until now.

We identified a WRKY protein, VvWRKY13, which belongs to the group IIc of 
WRKY transcription factors, from the grapevine cultivar ‘Zuoyouhong’ [27]. In this 
study, we examined its function by overexpression in transgenic Arabidopsis plants 
and transient expression in grapevine leaves. Our data indicates that VvWRKY13 is 
involved in seed germination, stomatal opening, and several other phenotypes via 
regulating ABA biosynthesis.

Material and methods

Plant material, growth condition, and treatments

The cultivation of the grapevine (Vitis vinifera L.) cultivar, ‘Zuoyouhong’ and its tissue 
culture seedlings, was performed as previously described [27]. The growth condition 
of Arabidopsis was also the same as previously described [27]. The roots were collected 
from 2-week-old seedlings, and used for qRT-PCR analysis. The leaves were collected 
from 6-week-old plants, and used for qRT-PCR analysis to detect senescence corre-
sponding to gene expression level.

DNA constructs, plant transformation, and qRT-PCR analysis

The VvWRKY13 promoter segment was cloned from the grapevine cultivar ‘Zuoyouhong’. 
The VvWRKY13 promoter sequence was amplified using the primers PromoterVvWRKY13-
FP and PromoterVvWRKY13-RP (Tab. S1), which contain a PstI and EcoRI linker sites on 
the forward and reverse primer, respectively. This fragment was then cloned into the 
pMD18-T vector (Takara, Japan). The fragment was excised using the restriction enzyme 
sites in the linkers and ligated downstream of the CaMV35S promoter in pCAMBIA1391 
linear vector, which contains a GUS gene downstream of the inserted fragment.

The resulting constructs were transferred into Agrobacterium tumefaciens strain 
GV3101. The transformation into Columbia ecotype of Arabidopsis along with the selec-
tion of transformed homozygous lines was performed as previously described [27].

The 4–5-week-old grapevine tissue culture seedlings were selected for the transient 
transformation by agroinfiltration. This transformation was performed as previously 
stated but with minor modifications [28]. The GV3101 strains contained 35S::VvWRKY13 
recombinant plasmid were reactivated and amplified at 28°C in YEB liquid culture with 
kanamycin and rifampicin. Then, collected by centrifugation at 5000 g for 15 min, the 
pellet was subsequently washed and suspended with induction media (10 mM MES, 
pH 5.6; 10 mM MgCl2 ; 2% w/v glucose; 150 μM acetosyringone). The new suspension 
was cultivated again until reaching a density of OD600 = 0.6. At the same time, P19 strain 
that functions as gene silencing suppressor, was also activated, amplified, centrifuged, 
and resuspended into a density of OD600 = 0.6. Then, the GV3101 and the P19 were 
mixed at the ratio of 1:1, and infiltrated into the leaves of 4–5-week-old grapevine tis-
sue culture seedlings using a vacuum pump. The leaves were harvested and analyzed 
after 4 days of infiltration.

Total RNA was extracted using a Plant RNA Extraction Kit (TaKaRa, Japan). The 
first-strand cDNA was synthesized using M-MLV Reverse Transcription Kit (TaKaRa, 
Japan). Quantitative RT-PCR was performed using Q-tower 2.0 real-time PCR detection 

and a signing reason in case any alterations 
made to the final content. If the certificate 
is missing or invalid it is recommended to 
verify the article on the journal website.



3 of 14© The Author(s) 2017 Published by Polish Botanical Society Acta Soc Bot Pol 86(2):3546

Hao et al. / VvWRKY13 enhances ABA biosynthesis in Vitis vinifera

system (Analytik Jena, Germany) with the presence of SYBR Green I (TaKaRa, Japan) 
in the amplification mixture according to the manufacturer’s protocols. Specific primer 
pairs were showed in Tab. S1. Amplification of β-actin transcripts served as the internal 
standard. The data were analyzed using Q-tower software (Analytik Jena).

GUS staining analysis

The PromoterVvWRKY13-GUS transgenic lines were used for GUS activity assays. The GUS 
staining was performed as previously described but with minor modifications [29]. First, 
plant tissues were prefixed in 90% (v/v) acetone for 20 minutes, then washed two times 
with water. Plant material was then placed into the GUS staining buffer [50 mM NaH2PO4, 
50 mM Na2HPO4, 10 mM Na2EDTA, 0.5 mM K3[Fe(CN)6], 0.5 mM K4[Fe(CN)6], 0.1% 
Triton-100 (v/v), 1 mM X-Gluc] under a vacuum for 10 minutes at room temperature 
followed by incubation for 12 hours at 37°C. The chlorophyll was then removed using 
75% (v/v) ethanol several times. The plant tissues were photographed at this time.

Stomatal bioassays

The fully expanded rosette leaves were harvested and immersed in MES buffer, which 
contained 50 mM KCl, 0.1 mM CaCl2, 10 mM MES, pH 6.1. The stomatal bioassay had 
been performed as previously described [24].

Endogenous ABA extraction and determination

Rosette leaves of 4-week-old Arabidopsis seedlings were collected, weighed, and imme-
diately frozen in liquid nitrogen. Frozen leaves were grounded to fine powder and ABA 
was extracted as previously described [9]. Quantitative determination of endogenous 
ABA was performed by HPLC as previously described [30].

Statistical analysis

Statistical analyses were performed using SAS, and the statistical significance evaluated 
by ANOVA. All tests were repeated at least three times.

Results

VvWRKY13 expression induced by stress conditions

Although VvWRKY13 was broadly detected, expressing in many tissues of grapevine 
[27], its expression under stress is still unclear. Using grapevine (Vitis vinifera L.) cultivar 
‘Zuoyouhong’, 4–5-week-old tissue culture seedlings were treated with 200 mM NaCl and 
200 mM mannitol for 0, 6, 12, 18, 24, 30 h. The relative expression level of VvWRKY13 
was detected by qRT-PCR. The results indicated that the expression level of VvWRKY13 
had increased after salt treatment, reaching the peak of transcript accumulation after 
6 h of treatment (Fig. 1a). During treatment with mannitol to mimic drought stress, 
the expression of VvWRKY13 showed the peak after 18 h (Fig. 1b). Similar expression 
patterns were thus observed both in salt and drought stresses (Fig. 1).

Expression pattern of VvWRKY13

In order to investigate the expression patterns of VvWRKY13, we constructed a 
PromoterVvWRKY13::GUS reporter. We generated transgenic Arabidopsis transformed with 
this construct. PromoterVvWRKY13 contained a 1200-bp genomic DNA sequence upstream 
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of ATG starting codon. Various tissues of transgenic plants at different developmental 
stages were examined via histochemical staining. In early-stage seedlings (12 h and 24 
h after germination), VvWRKY13 promoter directed GUS expression in the cotyledons 
(Fig. 2a–c). At 48 h after germination, GUS activity was detected in the cotyledons and 
hypocotyls of seedlings. In older seedlings (3–10 days after germination), GUS was 
expressed in the leaves but not in the roots (Fig. 2d–h). GUS expression was diminished 
as plants grew older (4 weeks after germination), but mechanical injury appeared to 
induce GUS expression (Fig. 2i,j).

In the reproductive organs, GUS expression was detected in petals, pistils, young 
siliques, but not in mature siliques (Fig. 2k–o). Together, these results suggested that 
VvWRKY13 was associated with green tissues in young seedlings and floral organs.

The effect of VvWRKY13 overexpression on seeds 
germination and stomatal aperture size

To examine the function of VvWRKY13, we overexpressed in Arabidopsis as a model 
system. We selected two independent overexpression lines for detailed analysis (Fig. 3a). 
We found that germination of transgenic seeds was delayed compared to the wild-type 
control (Fig. 3b). At any time point during germination assay, the germination rates of 
VvWRKY13 overexpression lines were lower than the wild type. These results showed that 
overexpression of VvWRKY13 inhibited seeds germination, suggesting that the function 
of VvWRKY13 might be related to ABA. To test this hypothesis, the stomatal aperture 
sizes of VvWRKY13 overexpression lines and the wild-type plants were measured. The 
results showed that the stomatal aperture size of VvWRKY13 overexpression lines was 
significantly smaller compared to the wild type (Fig. 3c).

The effect of VvWRKY13 overexpression on root system and plant senescence

It was observed that overexpression of VvWRKY13 in Arabidopsis increased primary 
root length (Fig. 4a,b) and lateral root number (Fig. 4a,c). The expression levels of other 
genes involved in root formation such as AtCDKA1;1 and AtCYCA2;1 cod ing cyclins 
or AtIAA19 and AtARF5 controlling auxin biosynthesis [31–34] were higher in the 
transformed Arabidopsis roots than in the wild type (Fig. 4d).

It was also observed that overexpression of VvWRKY13 in Arabidopsis shortened 
the life period and accelerated plant senescence (Fig. 5a). Checking the expression of 
senescence related genes AtSAG12, AtSAG13, and AtSAG113 [35,36] in the 6-week-old 
Ara bidopsis leaves, showed that it was elevated in VvWRKY13 overexpression lines 
compared to the wild type (Fig. 5b). In the next step we checked whether overexpression 
of VvWRKY13 altered the production of ABA – a plant hormone known to promote 
senescence [1,2].

Fig. 1 Relative expression level of VvWRKY13 in Arabidopsis under NaCl (a) and mannitol (b) treatment. The statistical significance 
of the difference was confirmed by ANOVA. Means followed by the same letter are not significantly different at α = 0.05 level. * p < 0.05.
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Fig. 2 Histochemical GUS assays in different tissues of PromoterVvWRKY13::GUS transgenic Arabidopsis. GUS staining analyses of 
seedlings after 12 h (a), 24 h (b), and 48 h (c) germination; hypocotyl (d), root (e), and root tip (f) of seedlings after 48 h germination; 
3-day-old seedlings (g); 10-day-old seedlings (h); 4-week-old leaf (i); 4-week-old stem (j); 3-day-old silique (k); flowers (l); 5-day-old 
silique (m); and mature silique (n–o). Scale bars: 1 mm (f 50 μm).
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The effect of VvWRKY13 overexpression on ABA production 
and expression of ABA biosynthesis genes

To find out whether VvWRKY13 overexpression altered the production of ABA, its 
level was measured in transgenic and wild-type plants. The results showed that the 
4-week-old transgenic Arabidopsis seedlings had significantly higher ABA production 
than wild-type seedlings (Fig. 6a). This result allowed to hypothesize that VvWRKY13 
increased ABA production through regulating its biosynthesis.

Enzymes functioning in the ABA synthesis pathway include ZEP, NCED, SDR, AAO, 
etc. The ZEP enzyme is encoded by the ABA1, and SDR is encoded by the ABA2 locus 
in Arabidopsis [1]. Using qRT-PCR, we were able to demonstrate, that the expression 
of NCED5, ABA1, and ABA2 significantly increased in the VvWRKY13 overexpression 
lines (Fig. 6b). The expression of AAO3 increased significantly only in one transgenic 
line (Fig. 6b). This result confirmed that indeed VvWRKY13 might increase ABA 
production by activating the expression of ABA synthesis genes.

The expression of ABA synthesis genes in VvWRKY13 
grapevine transient transformed leaves

Overexpression of VvWRKY13 in Arabidopsis induced ABA overproduction and 
increased expression of ABA biosynthesis genes (Fig. 6). How did the corresponding 
genes’ expression level change in the grapevine? Although transformation into grape-
vine is not as easy as in the case Arabidopsis, introduction of transient transforming 
genes into grapevine leaves caused by agroinfiltration facilitates the research on their 
function in this plant. Transformation of VvWRKY13 into the grapevine leaves was 
confirmed by PCR assay. (Fig. 7a). Overexpression of VvWRKY13 in grapevine cul-
tivar ‘Zuoyouhong’ using transient transformed method also showed the increase of 
NCED5, ABA1, ABA2, and AAO3. And these genes all contained W-box or W-like box 

Fig. 3 Overexpression of VvWRKY13 (a) inhibited seeds germination (b), and decreased stomatal aperture size 
(c). The statistical significance of the difference was confirmed by ANOVA. * p < 0.05.
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Fig. 4 Overexpression of VvWRKY13 promoted root formation. VvWRKY13 increased primary root length (a,b) and lateral root 
number (a,c). Two-week-old Arabidopsis seedlings cultivated in the 1/2 MS medium were used in the picture, and at least 30 plants were 
measured at each time point in each treatment. d The relative expression levels of root formation related genes CDKA1;1, CYCA2;1, 
IAA19, and ARF5 by qRT-PCR. The statistical significance of the difference was confirmed by ANOVA. Means followed by the same 
letter are not significantly different at α = 0.05 level. * p < 0.05.
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Fig. 5 Overexpression of VvWRKY13 accelerated plant senescence. a Comparison of plant senescence between the wild type and 
VvWRKY13 overexpression lines. b The relative expression levels of senescence related genes AtSAG12, AtSAG13, and AtSAG113 by 
qRT-PCR. The statistical significance of the difference was confirmed by ANOVA. Means followed by the same letter are not signifi-
cantly different at α = 0.05 level. * p < 0.05
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cis-elements in their promoter. (Fig. 7b,c). These results indicated that overexpression 
of VvWRKY13 in grapevine also promoted ABA biosynthesis. It was concluded that 
VvWRKY13 might increase ABA production by activating the expression of NCED5, 
AAO3, ABA1, and ABA2 genes.

Discussion

A WRKY transcription factor VvWRKY13 in the grapevine cultivar ‘Zuoyouhong’ was 
isolated in our previous study [27]. In the later experiments, the functions of VvWRKY13 
were continued to be explored. The results of qRT-PCR indicated that VvWRKY13 was 
induced by salt and drought stress (Fig. 1). VvWRKY13 was related with plant growth 
and development. According to the results of histochemical staining experiments, 
the expressed GUS gene was detected in cotyledons and hypocotyls of germinated 
seedlings, petals, pistils, the top and bottom of tender siliques. The GUS gene was not 
detected in roots of seedlings, mature leaves and stems of 4-week-old seedlings, and 
mature siliques (Fig. 2). Together, these results indicate that VvWRKY13 was related 
with specific stages and organs in the growth and development of the grapevine, such 
as seed germination, flowering, and siliques development. The mechanical injury 
increased the expression level of VvWRKY13 in the mature leaves and stems (Fig. 2i,j). 
Overexpression of VvWRKY13 in Arabidopsis also inhibited seed germination, decreased 

Fig. 6 VvWRKY13 promoted ABA production by inducing the expression of ABA biosyn-
thesis genes in Arabidopsis. a ABA production of 4-week-old VvWRKY13 overexpression 
lines. b Relative expression levels of ABA biosynthesis genes ABA1, ABA2, NCED5, and AAO3 
quantified by qRT-PCR. The statistical significance of the difference was confirmed by ANOVA. 
Means followed by the same letter are not significantly different at α = 0.05 level. * p < 0.05.
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Fig. 7 VvWRKY13 induced the expression of senescence and ABA biosynthesis genes in grapevine. a States of the grape leaves after 
being infected by different Agrobacterium strains and result analysis with PCR. b Sequence analysis of ABA synthase genes VvABA1, 
VvABA2, VvNCED5, and VvAAO3 promoters in grape. The WRKY domain interacted W-box and W-like boxes were marked. c The 
relative expression levels of ABA biosynthesis genes quantified by RT-PCR 4 days following infection. The statistical significance of 
the difference was confirmed by ANOVA. Means followed by the same letter are not significantly different at α = 0.05 level. * p < 0.05.
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stomatal aperture, and accelerated plant senescence (Fig. 3–Fig. 5). This result showed 
the function of VvWRKY13 might be related with ABA biosynthesis.

The root system consists of primary, lateral, and adventitious roots in higher plants, 
and ABA is reported to be functioning in a complex manner [37–39]. In high concen-
trations, ABA inhibits both primary and lateral root growth [37], nevertheless, it is 
required in low concentrations for primary root elongation [38,39]. The plants defficient 
in ABA biosynthesis and signaling also has complex ABA related phenotypes. The 
primary root of ABA insensitive mutant rpk1 is less inhibited than the wild type [40]. 
However, the ABA biosynthesis mutant aba2 has shorter primary roots and less lateral 
roots than the wild type [41,42]. In our research, the VvWRKY13 overexpression lines 
had longer primary roots and more lateral roots because of ABA excessive synthesis, 
which was coincident with the results of ABA biosynthesis mutant aba2. Factors that 
affect the root growth also include auxin, ethylene, Ca2+, H2O2, reactive oxygen species, 
etc. [43–45]. The root formation and elongation are probably regulated by a network. 
The effects of ABA on root growth and development are complex and still need to be 
further explored.

WRKY transcription factors are reported interacting with W-box and W-like boxes 
to activate the downstream genes [14–16]. Enzymes functioning in the ABA synthesis 
pathway include ZEP, NCED, SDR, and AAO, etc. [1]. Bioinformatics and qRT-PCR 
analysis indicate that the corresponding genes NCED5, AAO3, ABA1, and ABA2 were 
activated in the Arabidopsis and grapevine transgenic lines (Fig. 6, Fig. 7). This data 
revealed that VvWRKY13 is likely to promote ABA biosynthesis by the regulation of 
NCED5, AAO3, ABA1, and ABA2 expression. Recent studies showed that AtWRKY33 
binding the W-boxes of NCED3/NCED5 promoters negatively regulate ABA biosyn-
thesis in Arabidopsis [19]. However, it will be important to prove direct interaction 
between the VvWRKY13 and the W-box or W-like boxes in the promoters of these 
genes by yeast one-hybrid electrophoretic mobility shift assay (EMSA), or chromatin 
immunoprecipitation (ChIP), etc. in the following research.

WRKY transcription factors have different binding intensities to different cis-elements 
and different binding intensities even for same cis-elements in various physiological 
conditions [16]. The diverse of binding intensities may be due to different modifica-
tion of important amino acid residues or the coexistence of other proteins or cofactors 
under different physiological conditions [16]. In the end, the different activation of 
VvWRKY13 to NCED5, AAO3, ABA1, and ABA2 in ABA biosynthesis pathway will 
need to be clarified in a future research.
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