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Introduction

Tartary buckwheat (Fagopyrum tataricum) is a functional 
food, widely cultivated all over the world including Asia 
and southwest of China. As a functional food F. tataricum 
has been receiving much attention for its healing effects 
over chronic diseases for the long time [1]. It has been 
illustrated that intragastric administration of buckwheat 
concentrate effectively lowered serum glucose concentrations 
in streptozotocin-diabetic rat [2]. In humans, buckwheat has 
a therapeutic potential against hyperglycemia and diabetes 
mellitus [3].

D-chiro-inositol (DCI), a naturally occurring isomer of 
myo-inositol, is the main active nutritional ingredient in 
buckwheat. It acts as a component of a putative insulin me-
diator, a galactosamine D-chiro-inositol with an insulin like 
bioactivity [4]. DCI increase insulin sensitivity and decrease 
plasma glucose in obese rhesus monkeys with spontaneous 
insulin resistance [5]. In humans, non-insulin-dependent 
diabetes mellitus (NIDDM) has also been associated with 
decreased urinary DCI excretion [6]. Therefore, DCI has 
great potential to work as an adjunctive drug in the treat-
ment of insulin resistance ailments such as type 2 diabetes 
and polycystic ovary syndrome [7].

Buckwheat is an excellent dietary source of DCI in the 
form of its a-galactosides, fagopyritols, that accumulate 
in embryo tissues of seeds [8,9]. There are several form of 
fagopyritols accumulated in buckwheat seeds [10]. However, 
DCI exists as its galactosyl derivatives limits the nutritional 
value of buckwheat seed [8]. Previous research has demon-
strated that germination may have the potential to improve 
the nutritional value of the grain and can effectively reduce 
antinutrients in cereals and legumes [11].

Seeds have a high demand for energy during early ger-
mination. Raffinose family oligosaccharides (RFOs), which 
are ubiquitous in plant seed and are rapidly mobilized by 
α-galactosidase during seed germination to provide energy 
[12]. RFOs are important for early germination of plant. 
The inhibition of raffinose oligosaccharide breakdown de-
layed pea seeds germination indicating that galactose is an 
important component during germination [13]. Uniquely, 
buckwheat seeds accumulate small amounts of RFOs but 
large amounts of fagopyritols, more than 40% percent of 
total soluble carbohydrates, which can be hydrolysed by 
the α-galactosidase in vivo , releasing galactose and the free 
DCI [14]. Seed priming is the technique which is commonly 
used to improve germination behavior and seedling emer-
gence [15]. The application of seed priming will induce the 
synchronization of physiological and biochemical changes 
during seed germination [16].

Galactosidase can be divided into two types depending 
on their optimal pH for activity. The acidic α-galactosidases 
are most likely active in the acidic environment of vacuoles 
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while the alkaline forms probably catalyze galactose re-
lease in the more neutral or alkaline cytoplasm [17]. The 
acidic α-galactosidases prefer raffinose as the substrate in 
comparison with the alkaline form which shows a higher 
affinity for stachyose [18,19]. In germinating legume seeds, 
α-galactosidase plays a role in the mobilization of RFOs [20]. 
The characterization and cloning of α-galactosidase during 
germination have been studied in other plant [21–23]. The 
activity of α-galactosidase and the expression pattern of 
the gene especially during tartary buckwheat germination 
remain unknown.

Although some studies have been carried out to improve 
DCI contents in buckwheat sprouts, the effects of seed 
priming on DCI accumulation in tartary buckwheat sprouts 
have never been reported. Additionly, we cloned the gene 
fragment of α-galactosidase of tartary buckwheat and further 
tested the gene expression during seed germination by the 
qPCR method.

Material and methods

Tartary buckwheat seed germination
Tartary buckwheat seeds were purchased from Sichuan 

province of Southwest China and stored at −20°C. The fol-
lowing germination method was adopted as we reported 
before [24]. The seeds were surface sterilized with 10% (v/v) 
of sodium hypochlorite for 3 h and then washed. Then the 
seeds were mixed with sand containing 4% (v/w) water, 
sealed in plastic box and primed in darkness at 15°C for 
48 h. After treatment, seeds were washed under tap water 
and dried to the original moisture content determined by 
weighing with forced air under shade at 27 ±3°C for 2 days. 
The primed seeds were spread thinly on petri dishes contain-
ing layers of wet filter paper and initiated to germinate in 
the dark (25°C for 72 hours). Seed samples were collected 
at 12-hour intervals from 0 to 72 hours after imbibition, 
immediately frozen in liquid nitrogen and the samples were 
stored at −80°C for further use.

Analysis of DCI and total fagopyritol content
Phenyl R-D-glucoside, trimethylsilylimidazole (TMSI) 

and pyridine were purchased from Sigma-Aldrich (Shanghai, 
China), DCI standards were purchased from Wako Pure 
Chemicals Industries, Ltd. (Osaka, Japan). Fagopyritol 
standards were extracted from seed buckwheat (Fagopyrum 
esculentum L.). The DCI and total fagopyritol content were 
performed according to the procedure of Yang and Ren 
[25] with slight modification. Three replications of 10 seeds 
each were blended for 5 min using homogenizer with 20 ml 
of ethanol/water (1:1, v/v) containing 10 mg of phenyl 
R-D-glucoside as internal standard. The homogenate was 
centrifuged at 12 000 g for 10 min at room temperature, 
supernatant was removed, and the residue was re-extracted 
two times with 10 ml of ethanol/water (1:1, v/v) for 5 min 
and recentrifuged. An aliquot of the combined extracts 
was filtered through 0.22 μm film, transferred to silylation 
vials, and evaporated to dryness in a stream of nitrogen gas 
at 70°C water bath.

Extract residues were kept overnight in a desiccator 
over phosphorus pentaoxide to remove traces of water. Dry 
residues were derivatized with a silylation mixture (TMSI/
pyridine, 1:1, v/v) in silylation vials at 70°C for 30 min, 
cooled, and analyzed by gas chromatograph system (GC-
7900, Shanghai, China) equipped with a FID detector and 
a HP-5 capillary quartz column (50 m × 0.25 mm, 0.25 μm 
film thickness). The initial column temperature was 150°C, 
which increased gradually up to 200°C by the velocity of 3°C/
min. Subsequently, it was gradually increased to 325°C by 
the velocity of 7°C/min, and then maintained for 20 min. 
The inlet temperature was 335°C and detector temperature 
was 350°C. The carrier gas nitrogen was at 1.0 ml/min 
(measured at 30°C). The injection volume was 1 μl. DCI 
and the fagopyritols were identified by GC retention times 
identical to the standard.

DCI and total fagopyritols contents were quantified 
based on standard curves: the ratios of the area of signals for 
each known compound to the area of the signal for phenyl 
R-D-glucoside, the internal standard, were plotted against 
known amounts of each compound [20]. Amounts below 
the level of detection are presented as zero.

Assay on α-galactosidase activity
Three replications of 10 seeds each were ground in a glass 

homogenizer in extraction buffer (50 mM HEPES-NaOH, 
pH 7.4). Homogenates were centrifuged at 10 000 g for 
20 min at 4°C, the supernatants were stored at 4°C prior 
to assay of α-galactosidase activity. The enzyme activity of 
α-galactosidase was determined as previously described 
[26]. The quantitative analysis of its activity was measured 
by detection the p-nitrophenol released from p-nitrophenyl-
α-D-galactopyranoside (pNPGal). The reaction mixtures 
consisted of 0.9 ml substrate (3 mM pNPGal in 100 mM 
NaAc buffer, pH 5.0) and 0.1 ml of suitably diluted enzyme 
preparation. The reaction was terminated by the addition 
of 3 ml of 3% Na2CO3 after incubation for 15 min at 37°C 
and the quantity of p-nitrophenol released was measured at 
410 nm. Blanks were prepared by adding the enzyme extract 
after Na2CO3. One unit of enzymatic activity, nkatal (nkat) 
was defined as the amount of activity that released one nmole 
of p-nitrophenol per second at pH 5.0 and 37°C. The enzyme 
activity was expressed in units per seed (nkat/seed). The data 
presented for all α-galactosidase activity determinations 
are mean values of triplicate assays in which the standard 
deviations were always smaller than 10%.

Cloning and sequence analysis of FtaGAL in buckwheat
As the buckwheat belongs to dicotyledon , the alignment 

of the amino acid sequence of α-galactosidase among vari-
ous dicotyledonous plant species was done with Clustal X 
software [27]. The conservative sequences were used for de-
signing two degenerate PCR primers, GALF: 5'-TGGG(G/A)
(A/G)T (G/A )GA(C/T)TA (C/T) T (G/A)AA(A/G)TATG-3' 
and GALR: 5'-TC(G/A)A(A/G)C AT (A/G) TC(G/ A)
GG(A/G) TC (A/G) TTCC-3'.

Seed samples were powdered in liquid nitrogen with 
mortar and pestle and the total RNA was extracted using 
Trizol reagent according to the manufacturer’s instructions 
(Invitrogen, Carlsbad, CA, USA). Less than 500 ng RNA 
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was used for the RT-PCR as specified in the RNA PCR 
Kit (AMV) Ver.3.0 (TaKaRa, Japan). The oligo dT-adaptor 
primer was used for cDNA synthesis at 42°C, 60 min. The 
PCR amplification was carried out with above-described 
degenerate primers. The amplification profile was one cycle 
at 93°C for 3 min, followed by 35 cycles at 93°C for 15 s, 
55°C for 30 s and 68°C for 5 min, and a final extension step 
at 72°C for 7 min. The amplified products were recovered 
from 2.0% agarose gels, cloned into the pGEM-T vector, 
and transformed into Escherichia coli DH5α. Sequencing 
was performed commercially and sequence analyses were 
performed using BLAST from the NCBI (http://www.ncbi. 
nlm.nih.gov/Tools/).

The expression pattern of α-galactosidase 
during tartary buckwheat germination
The primers for FtαGAL were designed based on the 

obtained cDNA sequence. The housekeeping gene β-actin 
was used as internal reference. The primer pairs for FtαGAL 
were FtαGAL-F: 5'-GATACCCTCCCATGCGTGATGC-3' 
and FtαGA-R: 5'-GCATAGGCTGCC CACTTGTCAT-3'. 
The deduced amplification length was 203 bp. The primer 
pair for β-actin was actin-F: 5'-GCTGGATTTGCTG-
GAGATGATGC-3' and actin-R: 5'-CTTCTCCATGTCA 
TCCCAGTTGCT-3' and the deduced amplification length 
was 196 bp.

Total RNA and first-stand complementary cDNA of buck-
wheat seeds at different germination stages were prepared 
as described above. The internal reference gene β-actin and 
target gene FtαGAL were analyzed in one plate, and each 
reaction was repeated three times to access the reproduc-
ibility. The cycling protocol consisted of denaturation at 
95°C for 5 s, annealing at 58°C for 15 s, elongation at 72°C 
for 20 s, and the PCR reaction was run for 40 cycles. The 
fluorescence data was collected at 81°C for 20 s. The model 
2−ΔΔCT for comparing relative expression results between 
samples in real-time PCR was applied. The expression of 
target gene, normalized to the reference control and relative 
to a calibrator (time-zero sample) is given by R = 2−ΔΔCT, 
where ΔΔCT = ΔCT sample − ΔCT control. All samples 
were performed in triplicates. Positive and negative controls 
were performed on each plate.

Results

Seed germination of tartary buckwheat
Seed priming enhanced tartary buckwheat seed perfor-

mance with respect to the speed and uniformity of germi-
nation (Fig. 1). The tartary buckwheat seed, after priming, 
began to germinate just 12 hours after incubation on wet 
paper layers. In the following time, seed germinated quickly 
and reach 73.2% at 24th h , then reached the maximum 
germinability as high as 94% at 36th h. It indicates that the 
fastest germination must take place between 12 h and 24 h 
and the complicated physiological and biochemical changes 
may occur in this period.

The contents of DCI and total fagopyritol during 
tartary buckwheat germination
The contents of DCI and total fagopyritol in tartary 

buckwheat seeds were determined at different germination 
stages (0–72 h; Fig. 2). The DCI contents increased dramati-
cally during the early germination. At 24 h, it reached the 
maximum level of 33.4 µg/seed, which was about 2.3 times 
that of time-zero seeds. However, after 24 h, the DCI content 
in tartary buckwheat sprouts sharply decreased. After 60 h, 
the level was lower than that of time-zero seeds. Therefore, 
the optimum time for tartary buckwheat germination was 24 
h, yielding the maximum DCI content. The total fagopyritol 
content revealed an opposite trend, decreased during the 
tested period from 214.6 (0 h) to 46 µg/seed (72 h). The 
breakdown of fagopyritol may release D-chiro-inositol and 
galactose, indicating that they may play a special role during 
early germination.

Enzyme activity assay of α-galactosidase during the germination
Acid α-galactosidase has great influence on seed devel-

opment and germination, therefore, recent studies have 
paid much attention to it [28]. The activities of the alkaline 
α-galactosidase were very low and changed little during the 
buckwheat seed germination (data not shown). The activities 
of acidic α-galactosidase in tartary buckwheat seeds were 
measured at different germinating periods (Fig. 3). The 
activity of α-galactosidase exhibited high even at time-zero 
and increased slowly during the next 36 h of germination 
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Fig. 1 Time course of germination of primed tartary buckwheat 
during the first 72 h. Data presented are means ±SD (n = 3).
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Fig. 2 Changes in DCI and total fagopyritol content of tartary 
buckwheat in germinating tartary buckwheat. Data presented are 
means ±SD (n = 3).
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(from 0.30 to 0.36 nkat/seed). However, it decreased rapidly 
and at the end of the germination it was only 0.12 nkat/seed.

Cloning and identification of FtaGAL gene
The consecutive amino acid sequences of α-galactosidase 

in dicotyledonous were aligned and the protein exhibited 
a highly conservative sequence (Fig. 4). The degenerate 
primers were used and the cloned partial cDNA of FtaGAL 
is 293 nucleotides. Multiple alignments revealed a high 
degree of homology between deduced amino acid sequence 
of Ftα-GAL and α-Galactosidase of other plants. The high-
est identity was found to be 93% similarity with P. vulgaris. 
The deduced sequence covered 23% of the full length of 
the P. vulgaris α-galactosidase protein sequence. Ftα-GAL 
showed less homology with that of Glycine max (91%), Cicer 
arietinum (90%) and Salvia mitiorrhiza (90%).

Expression of α-galactosidase gene in tartary 
buckwheat seed during germination
 Quantitative PCR was used to analyze the gene expres-

sion pattern during tartary buckwheat seed germination 
(Fig. 5). The mRNA level of α-galactosidase in buckwheat 
seeds increased steadily during early germination. At 24 h 
it reached the peak as 2.59 fold in comparison with that of 
time-zero seeds. Up-regulation of the genes responsible 
for the fagopyritol breakdown was expected, which was in 
accordance with the activity of α-galactosidase in tartary 
buckwheat seed. However the gene expression was found 
to be down-regulated at the later stages of germination, it 
declined to only 0.12 fold relative to control at the end of the 
germination. This correlated with the decrease of the activity 
of α-galactosidase in buckwheat germination.
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Fig. 3 α-galactosidase activity in primed tartary buckwheat seed 
during germination. Data presented are means ±SD (n = 3).

Fig. 4 The consecutive amino acid sequences of α-galactosidase gene in dicotyledon.

Fig. 5 Expression pattern of α-galactosidase gene during tartary 
buckwheat germination. The relative expression of α-galactosidase 
was quantified in comparison with the ACTIN using quantitative 
PCR with gene-specific primers. The values represent the average of 
three independent samples. Data presented are means ±SD (n = 3).
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