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Introduction

Plastids are major and important organelles of the plant 
cell, as they perform essential biosynthetic and metabolic 
functions. These include photosynthetic carbon fixation, 
synthesis of amino acids, fatty acids, starch and secondary 
metabolites such as pigments [1]. There are several forms 
of differentiated plastids, i.e. chromoplast, leucoplast or 
chloroplast; and they are classified on the basis of their 
structure, pigment composition, metabolism and function. 

Chloroplasts are characterized by their high concentration 
of chlorophyll and carry out a number of other functions 
besides photosynthesis, including fatty acid and amino acid 
synthesis [1], as well as immune response [2]. These organ-
elles are not static, as they can circulate and move in plant 
cells when influenced by environmental factors, especially 
light. Cytoskeletal elements, such as actin, are involved in 
moving and positioning of chloroplasts [3].

Chloroplasts have two envelope membranes, the outer and 
inner chloroplast membranes, and are generally lens-shaped 
[4]. Protrusions emanating from chloroplasts are sometimes 
visible by light, fluorescence and electron microscopy. These 
thin, stroma-filled tubules, extruding from the plastid, and 
surrounded by both envelope membranes, are called stro-
mules and have been observed for all plastid types examined 
so far [5–9]. Other organelles can have protrusions too, and 
corresponding terms were given to describe those exten-
sions, according to the stromules for plastids convention: 

namely matrixules for mitochondria [10] and peroxules for 
peroxisomes [11]. Stromules are highly dynamic, branching 
and elongating across the plant cell, usually less than 1 µm 
in diameter and of variable length. They can appear as short 
beak-like projections, to linear or branched structures up to 
several hundred µm long.

Stromules occur in all cell types, but stromule morphol-
ogy and the proportion of plastids with stromules, vary 
from tissue to tissue and depend on plant developmental 
stages as well as biotic and abiotic stress conditions [12,13]. 
Although a lot of work has been done to understand stro-
mules (reviewed in [8,14]), there are still a lot of unanswered 
questions. Here, we briefly summarize the current status on 
markers and inducers of stromules, with emphasis on plant 
pathogens as inducers.

Stromule markers

In addition to direct stromule observation by light and 
electron microscopy, or a fluorescence dye [15] in untrans-
formed plants, a common method to visualize stromules in 
vivo is by the use of a marker protein fused with a fluorescent 
tag like the green fluorescent protein (GFP). One of the 
first markers applied was the CT-GFP construct [16,17]. 
This marker protein localizes to the chloroplast stroma and 
thereby also visualizes stromules.

Meanwhile, various constructs for stroma-targeted 
fluorescent marker proteins and also transgenic plant lines 
expressing these markers were established for plastid and 
stromule observation [18]. A transgenic Nicotiana ben-
thamiana line, which is available to highlight the plastid 
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stroma and stromules, expresses a GFP fusion protein with 
ferredoxin NADP(H) oxidoreductase (FNR), FNR::eGFP 
[19–21]. Other constructs have also been reported to visual-
ize stromules, e.g. chloroplast-localized heat shock cognate 
70-kDa protein (cpHSC70-1) [22,23], outer envelope protein 
16 -2.1, -2.2 and -1.3 [24] and mutants of the Arabidopsis 
resistance protein RPW8.2 [25].

Markers based on chloroplast outer envelope proteins 
have to be considered carefully. Breuers et al. [26] showed 
that stromule formation can simply be induced by over-
expression of an outer envelope protein, e.g. outer envelope 
proteins AtLACS9 and AtTOC64-III. They showed that the 
formation is independent of the function or structure of the 
protein and posited that the proliferation of the membrane 
was a direct effect of the protein content in the membrane. 
So it must be taken into consideration that visualizing 
stromules usually requires protein overexpression, which 
might lead to artifacts. Therefore controls are necessary and 
essential. In general, expression of a stroma-targeted protein 
or a fluorescence dye in fluorescence microscopy analysis of 
stromules is more advisable than expression of a chloroplast 
membrane-localized protein.

Stromule formation upon plant virus infection

Kwok and Hanson [27] suggested that stromules may 
serve as pathways between nuclei, the cell periphery and 
possibly even other cells. They observed a concentration 
of plastids around nuclei with stromules reaching to the 
plasma membrane and through nuclear grooves. This close 
contact between plastids and the nuclei and/or the plasma 
membrane implied a function for the exchange of molecules 
between plastids and other organelles or diverse regions of 
the plant cell. Furthermore, Kwok and Hanson [27] found 
that stromules from two neighboring cells appeared to 
meet at either side of an adjoining cell wall. The cpHSC70-
1-containing stromules detected upon an Abutilon mosaic 
virus (AbMV, plant ssDNA virus, Geminiviridae)-infection 
that was also in close association with the nucleus, appeared 
to interconnect plastids and extended from plastids outward 
to the cell periphery. This led to speculations of intra- and 
intercellular geminiviral transport in association with stro-
mules [22,23]. A geminiviral nucleoprotein complex moves 
out of the plant nucleus via plasmodesmata into the adjacent 
cell to systemically infect the plant. Therefore we wanted to 
know, if stromules form structures spanning the nucleus, 
chloroplasts and plasmodesmata and if we can visualize an 
association of stromules and plasmodesmata. This association 
then could serve as an intracellular virus transport highway 
to the neighboring cell.

In our hands, stromule formation was never visualized by 
the overexpression of cpHSC70-1 alone, but only together 
with a plant DNA virus infection. Similar results were 
obtained with inoculation and co-expression experiments 
with AbMV and the Arabidopsis thaliana outer envelope 
protein 7 (OEP7; Fig. 1a). However, it was shown elsewhere 
that only the overexpression of OEP7 can lead to stromule-
like structures formation [28]. OEP7 was fused to GFP and 
transiently expressed in N. benthamiana epidermal leaves. 

OEP7::GFP signals were exclusively found in association with 
chloroplasts, but no stromules or stromule-like structures 
could be detected, except induced upon AbMV infection. 
Leaf material was also co-infiltrated with agrobacteria har-
boring an expression construct for the AbMV nuclear shuttle 
protein (NSP) fused to the red fluorescent protein (RFP). NSP 
is located in the plant nucleus, but additionally mobilized by 
the AbMV movement protein (MP) to the plasma membrane 
([23] and references therein). NSP and MP together mediate 
cell-to-cell transfer and long distance transport of viral DNA 
replicated within the nucleus throughout the whole plant 
body. Thus, an AbMV-infected plant cell displays NSP::RFP 
signals in the nucleus and at the cell periphery.

In agreement with previous data, the OEP7::GFP marker 
also highlighted the induction of what appeared to be a 
stromule network upon an AbMV infection. What remains 
to be demonstrated is whether, under the condition of viral 
infection, the membranes of different plastids fuse with 
each other or if they just closely associate to each other. 
Chloroplasts tended to surround the nucleus and one could 
observe stromule formation connecting chloroplasts, along 
the nucleus or reaching towards the plasma membrane. In-
terestingly, stromules associated with the plasma membrane 
seemed to follow the membrane (Fig. 1c,d). Occasionally 
bulges along the stromules were observed. The OEP7::GFP 
labeled stromules induced by AbMV-infection exhibited 
similar appearance to those visualized by cpHSC70-1 [22,23]. 

In an additional experiment we wanted to test stromule 
association with plasmodesmata – microscopic channels 
that traverse the cell walls of plant cells [29]. Plasmodesmata 
enable direct, regulated, symplastic intercellular transport 
of substances between cells. The 3a movement protein (MP) 
of cucumber mosaic virus (CMV) targets plasmodesmata 
and accumulates in the central cavity of the pore [30] and 
was used in this assay as a marker protein for plasmodes-
mata. CMV MP was fused with RFP and co-expressed 
with OEP7::GFP and AbMV. CMV MP::RFP highlighted 
plasmodesmata, and again, AbMV infection was suffi-
cient to induce stromules visualized by OEP7::GFP, but we 
could never observe an association of CMV MP::RFP and 
OEP7::GFP in this experimental set-up. Also the bulges or 
packet structures along the stromules were never associated 
with the plasmodesmata marker (data not shown).

Inducers of stromules

Schattat et al. [14,31,32] do not support a function of 
stromules in trafficking of macromolecules between plastids, 
despite the strong microscopic impression of interplastid 
connectivity via stromules. They could not observe an 
exchange of a stroma marker protein between independent 
plastids. Hanson and Sattarzadeh [33] then commented and 
showed evidence for the flow of proteins between intercon-
nected plastids. They claimed that Schattat et al. [14] were 
unable to observe movement because of stromule breakage 
or disruption of the fluorescent protein by the high-intensity 
laser power they employed. Mathur and Barton [34] dis-
agreed with this explanation, stating that their procedure 
was very mild in comparison to procedures using intense 
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lasers. While the groups disagree about whether proteins 
can flow between plastids already connected with stromules, 
they both agree that the debate surrounding the formation 
of new connections between separate plastids will continue 
until a stromule in the act of attaching to another one is 
found during a photoconversion experiment.

Beside possible interplastid connectivity via stromules, 
it is striking that stromules or stromule-like structures also 
extend to the plasma membrane, as well as the nucleus. It 
may indicate a specific response to viral infection resulting 
in increased communication between chloroplasts and other 
cell compartments, or a more general stress response of the 
cell. Various abiotic and biotic stress conditions including 
heat [9], subcellular redox stress [35], application of extracel-
lular sucrose or glucose [21], colonization by an arbuscular 
mycorrhizal fungus [36] and infiltration of agrobacteria [31] 
were described as inducers of stromules. Gray et al. [37] 
showed that various stress treatments, including drought and 
salt stress, are able to induce stromule formation in tobacco 
epidermal cells. Application of abscisic acid (ABA) to tobacco 

and wheat seedlings also induced stromule formation very 
effectively. Stromules were more abundant in dark-grown 
seedlings than in light-grown seedlings, and stromule 
formation was sensitive to red and far-red light. Stromules 
were induced by treatment with the ethylene precursor ACC 
(1-aminocyclopropane-1-carboxylic acid) and by treatment 
with methyl jasmonate.

Undoubtedly, stromule formation can be induced by plant 
viruses [22,23,38–40] (and this study). RNA-virus infected 
sugar beets showed structures resembling stromules [40]. 
Shalla [38] described stromule occurrence in TMV-infected 
tomatoes. Caplan and colleagues described the same in 
TMV-infected tobacco plants [39], just as for N. benthami-
ana plants locally infected with the AbMV [22,23]. Several 
geminiviruses were found to interact with diverse plant 
hormone pathways, such as the salicylic acid, ethylene, 
jasmonic acid pathways and to the brassinosteroid pathway. 
They activate the salicylic acid and ethylene pathways, which 
both participate in the host defense response [41]. Tran-
scriptomic analysis has recently shown that geminiviruses 

Fig. 1 Abutilon mosaic virus-induced OEP7-containing stromules extending from plastids to the nucleaus and cell periphery. Transient 
co-expression of test constructs in leaf tissues of non-infected and locally AbMV-infected N. benthamiana and confocal fluorescence 
microscopy. AbMV infection was established by simultaneous agro-infiltration of infectious DNA A and DNA B clones with the fluorescent 
protein expression constructs. a Merged image of chloroplast (ChP) with full length OEP7:green fluorescent protein (GFP) driven under the 
CaMV 35S promotor in non-infected plants, chloroplast autofluorescence is shown in blue, 2dpi. b–d Merged image of chloroplasts (ChP) 
and nucleus (N) with OEP7:green fluorescent protein (GFP) and NSP:red fluorescent protein (RFP) in AbMV-infected cells, NSP::RFP 
marks nucleus and plasma membrane, chloroplast autofluorescence is shown in blue, 2dpi. Arrowheads highlight stromules. Bar: 5 μm.
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