
183This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 License (creativecommons.org/licenses/by/3.0/), which permits 
redistribution, commercial and non-commercial, provided that the article is properly cited. © The Author(s) 2014 Published by Polish Botanical Society

Introduction

Attempts to analyze biodiversity hotspots on a regional 
scale should combine compositional and functionalist 
criteria [1]. Compositional criteria have typically relied on 
determining the taxonomical richness or the occurrence of 
rare, threatened and endemic species [2–4]. The functionalist 
approach focuses on dynamic processes and indication of 
possible changes in the distribution of hotspots and their 
characteristics in the future [1,5].

On a regional scale, it seems to be difficult to produce a 
single map of hotspots for different groups of species that 
differ ecologically [6], which is based on different diversity 
measures [4]. The detection of hotspots in this study uses one 
ecologically similar group of high conservation value species 
as hotspot indicators, as well as focal habitat indicators, to 
detect the distribution of suitable environmental conditions.

Species representative of key habitats of regional biodi-
versity may be used as indicators of potential habitats for 
rare species. The study assumes that patterns of focal habitat 
distribution can be included in the functionalist approaches 
to hotspot detection. This approach is similar to that of 

Hughes et al. [7] who propose that emphasis should be 
placed on preserving the connectivity of widely-dispersed 
species, combined with intensive protection of quite local-
ized hotspots.

The study evaluates this method with regard to ther-
mophilous forests on Polish territory. They play an important 
role as habitats for many rare and threatened plants, and are 
one of the most species-rich forest ecosystems in Central 
Europe [8–10]. In the European Union, most are protected 
in the Natura 2000 network as natural habitats [10,11]. Con-
centrations of thermophilous plants in Central Europe are 
typical of the complexes of forest, scrub, fringe and grassland 
vegetation that remained in the relict “dry islands” [12–14]. 
The long-lasting existence of the Central European forests 
with helio- and thermophilous flora was probably possible 
in combination of specific habitat conditions and the regime 
of anthropo-zoogenic, fire disturbance and large herbivore 
pressure or special forestry practices, such as coppicing 
[9,15–19]. During recent decades, a rapid extinction of 
open forests has been observed as a result of the expansion 
of mesophilic trees and shrubs after cessation of such tradi-
tional forms of forest use as grazing and litter raking, and the 
overall anthropogenic eutrophication of soils [9,20,21]. As 
the Polish territory to the north of the Carpathians and the 
Sudetes Mts. offers various habitat conditions in the glacial, 
periglacial and highland landscapes, the question arises: 
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how large are the areas with a concentration of the rarest 
thermophilous forest plants in these different landscapes?

The aim of this study was twofold: (i) to indicate the 
hotspots of thermophilous forest flora in Poland using high 
conservation priority species as indicators, and (ii) to detect 
areas with suitable conditions for thermophilous forest 
flora using the focal habitat indicators. Generalization of 
indicator species richness was made by using geostatistical 
interpolation methods [22,23].

Material and methods

Study area
The study was conducted in the Polish territory, mostly 

lowland and upland areas between the Carpathians, the 
Sudetes and the Baltic Sea in Central Europe, stretching 
between the north latitudes 49°00'–54°50' and the east longi-
tudes 14°07'–24°08'. The study area is located in the transition 
zone between the temperate oceanic (Atlantic) climate in 
the west and the moderate continental climate in the east. 
The potential natural vegetation is mainly mesophilic oak-
hornbeam forests, beech forests and mixed pine-oak forests 
[24]. The patches of thermophilous forests are of extrazonal 
character [9,25].

Hotspot distribution was analyzed in the following land-
scapes: young glacial, periglacial (old glacial) and highlands/
mountainand in relation to the maximum extents of the 
Vistulian (Würm) and Wartanian (Riss) Glaciations, ac-
cording to Marks et al. [26].

Hotspot indicators
The species from the “Red list of vascular plants in Poland” 

[27] and from the “Polish red data book of plants” [28] 
that occur most frequently in thermophilous forests and 
thermophilous fringe communities was chosen. Twenty-six 
taxa were identified: Adenophora liliifolia, Carduus collinus, 
Cephalanthera damasonium, C. longifolia, C. rubra, Cypri-
pedium calceolus, Dictamnus albus, Dorycnium herbaceum, 
Epipactis microphylla, Euphorbia epithymoides, Festuca 
amethystina subsp. ritschlii, Inula germanica, Lathyrus 
pisiformis, Buglossoides purpurocaerulea (=Lithospermum 
purpurocaeruleum), Melampyrum cristatum, Orchis pallens, 
Orchis purpurea, Orchis tridentata, Peucedanum alsaticum, 
Potentilla rupestris, Prunus fruticosa, Quercus pubescens, 
Rosa gallica, Thesium ebracteatum, Veratrum nigrum and 
Veronica paniculata. All plant nomenclature is given ac-
cording to Tutin et al. [29]. The species richness analysis is 
based on plant distribution data from the Atlas of vascular 
plant distribution in Poland, ATPOL [30], collected on the 
basis of a 10 × 10 km grid.

Focal habitat indicators
Indicators of thermophilous forests north of the Carpathians 

and Sudetes Mts. belong to a well-defined phytosociological 
group of species characteristic of subcontinental and sub-
mediterranean oak forests Quercetalia pubescenti-petraeae 
Klika 1933 corr. Moravec in Beguin et Theurillat [8,25,31,32]. 
Ten taxa characteristic of the Quercetalia pubescenti-petraeae 
phytosociological order, after Matuszkiewicz [25], were 

chosen: Campanula persicifolia, Hypericum montanum, 
Lathyrus niger, Melittis melissophyllum, Potentilla alba, 
Pulmonaria angustifolia, Pulmonaria mollis, Ranunculus 
polyanthemos, Sorbus torminalis, and Tanacetum corymbosum 
ssp. corymbosum. Again, the richness of the above-mentioned 
indicators (per square 10 × 10 km) was calculated with the 
use of data on the distribution of species from the Atlas of 
vascular plant distribution in Poland – ATPOL [30].

Spatial interpolation of species richness
The interpolation of species richness was performed by 

ordinary kriging (OK) to detect its general spatial pattern. 
OK is one of the most commonly used methods for geosta-
tistical interpolation of data in the environmental sciences 
[22,23,33].

Maps of the distribution of indicator species from the 
ATPOL atlas [30] were digitized with ArcGIS Desktop™ 9.2 
software [34]. Midpoints were generated for the squares 
(10 × 10 km) and species richness was calculated for each. 
Because the data being arranged on a regular grid at a fairly 
high density, hence the values on the map of interpolation 
uncertainties were evenly distributed [22,35].

To determine the spatial structure of species richness, 
a semivariogram was calculated [22,36]. Basic spatial pa-
rameters of semivariogram such as nugget variance (Co), 
structural variance (C), sill (Co+C) and range (A) were 
calculated [22,37]. The best fit model, spherical, exponential 
or Gaussian, was selected. Models were assessed using two 
methods. The first was the residual sum of squares (residual 
SS), which provides an exact measure of how well the model 
fits the variogram data: the lower the reduced sum of squares, 
the better the fit of the model. The second was the regression 
coefficient r2, which indicates how well the model fits to the 
variogram data, although it is not as sensitive or robust as 
the residual SS for best-fit calculations [37]. The parameters 
of the model that best fit the empirical semivariogram were 
further used for spatial interpolation of data. For search 
methods, a radius equal to the range (A) in the model that 
best fit the semivariogram, and a cell size of 10 × 10 km was 
used. Geostatistical analysis was performed using GS+9™ 
Gamma Design Software [37].

The interpolation produced raster data assigned with 
values for indicator species richness. Visualizations of the 
interpolation results, statistics and correlation analysis were 
performed in ArcGIS Desktop™ 9.2: spatial analysis module, 
multivariate analysis module and band collection statistic 
tool [34].

Results

Modeling the spatial structure of indicator species richness
The exponential model demonstrated the best fit to the 

empirical semivariogram demonstrating the spatial structure 
of richness of hotspot and habitat indicator species in the 
analyzed area (Tab. 1). In comparison with the other models, 
it had the smallest residual SS (0.0067 for hotspot indicator 
richness and 0.076 for habitat indicator richness) and a 
correlation coefficient r2 closest to unity (0.901 and 0.940, 
respectively). Its nugget variance was moderate (0.106 and 
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0.46) and the range was the greatest (40 800 m and 63 000 m), 
indicating the distance to which the richness of the studied 
species is spatially dependent. In line with the results of 
variogram modeling, the OK interpolation was based on the 
exponential model. The radius of the search used in OK was 
the determined range, i.e. 40 800 and 63 000 m.

Species richness, its interpolation and correlations
The original species number of both hotspot and habitat 

indicators range from 0 to 10 species per 10 km square 
(Fig. 1a). However, although the species pool of habitat 
indicators (10) is less than half of hotspots indicators (26), 
mean richness of habitat indicators is 3 times higher (Fig. 1a). 
The number of cells (i.e. area occupied on the maps) with 
close to mean values of habitat indicator richness was em-
phasized after the spatial interpolation of data (Fig. 1a,b). 
In both cases, the kriging interpolation reduced the species 
richness ranges, from 10 per square to 4.5 for hotspot and 
6.9 for habitat indicator species. The correlation coefficient 
between raster layers, which represent the richness of hotspot 
and habitat indicators, is 0.56 for original data, and 0.64 after 
ordinary kriging interpolation.

Hotspot distribution
The upland areas in the south of the Wartanian Glaciation 

(the Polish Uplands and the Sudetic Foreland) are the rich-
est in hotspots. In this part of the country occur 10 squares 
with original number of indicator species equal 7 and above 
(Fig. 2a, , squares No. 2–11) and five hotspots, where the 
interpolated richness ranged from 3.1 to 4.0 species and in 
three of them to 4.5 (Fig. 2b). The hotspots with richness 
more than 2.0 occupy 10% of this part of the country (Tab. 2).

The second center of hotspots is located in the Wielkopol-
ska Lowland and Masurian Lakeland, in the young glacial 
landscape (Fig. 2b). However, only one hotspot with original 
number of species equal 9 (Fig. 2a, square No. 1) and with 

interpolated richness up to 4.0 is located in this part of the 
country: the Bielinek nature reserve (Fig. 2a,b). The rest of 
hotspots with interpolated richness up to 3.0 are dispersed 
and isolated (Fig. 2b); the areas with richness more than 2.0 
occupy 1.8% of the area.

A large disjunction between areas with hotspots was 
identified in central Poland (Fig. 2b), where the areas with 
richness of hotspot indicators more than 2.0 occupy only 
0.1% (Tab. 2). This part of Poland is situated between the 
Vistulian and the Wartanian Glaciations in the old glacial 
landscape (Fig. 2b).

The distribution of suitable habitats i.e. areas with rich-
ness of indicator species is higher than 2.0 (close to mean 
value 1.85 – for the whole study area) is similar to general 
pattern of hotspots distribution (Fig. 2b,c). Suitable habitats 
are widely distributed (areas with richness >2.0 occupy 
36.0%) than hotspots (areas with richness >2.0 occupy 4.5%) 
and therefore can indicate possible landscape connections 
between hotspots. Five areas with high richness of habitat 
indicators but without hotspots occur: one in the eastern part 
of the Polish Uplands, with richness of habitat indicators up 
to 6.9 and four in the north-eastern and central parts of the 
country, with richness up to 6.0 (Fig. 2b,c).

Variogram 
model type Co Co+C A (m)

Residual 
SS r2

Richness of hotspot indicators

Spherical 0.028 1.074 30 900 0.0117 0.826

Expotential 0.106 1.078 40 800 0.0067 0.901

Gaussian 0.148 1.074 26 673 0.0116 0.828

Richness of habitat indicators

Spherical 0.16 3.98 43 000 1.191 0.836

Expotential 0.46 4.01 63 000 0.076 0.940

Gaussian 0.61 3.96 38 105 0.181 0.840

Tab. 1 Parameters of variogram model types examined to choose 
a model that best fitted to the experimental data of richness of 
hotspot and habitat indicators of thermophilous forests in Poland.

Values in bold type – parameters of the best fitted model.

Fig. 1 The schedule of cells in raster layers which presents the 
richness of the hotspot indicators (solid line) and habitat indica-
tors (dashed line) of thermophilous forests in Poland. a Original 
data. b Data after ordinary kriging interpolation; species richness 
calculated per square 10 × 10 km. SD – standard deviation.
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Discussion

The geostatistical analysis indicates that the maximal dis-
tance for significant spatial correlation is 40.8 km for hotspot 
species richness and 63.0 km for habitat indicator richness. 
Moreover, the mean value for hotspot indicator richness is 
less than one third of that of the habitat indicators. These 
results imply that the hotspot indicators, and by extension, 
the most threatened thermophilous species, occupy rather 
isolated environmental islands in comparison to the habitat 
indicators, which are rather well dispersed. Moderate posi-
tive correlations were seen between the hotspot and habitat 
indicators: the correlation coefficient was found to be 0.56 
for the original data and 0.64 after interpolation. Some areas 
with high habitat indicator richness but with a low incidence 
of hotspot indicators were detected. They could act as sites 
where the threatened thermophilous plants may be found in 
the future, or possibly as environmental corridors.

The ordinary kriging method produced generalized 
map of indicator species richness. The result can be used as 
an background layer in phylogeographical studies, spatial 
modeling, metapopulation demography and landscape 
interaction modeling. Spatial patterns in actual species 
distribution are easier to identify after the data is subjected 
to interpolation. Interpolation of floristic data eliminates 
also the possible lack of precision or random errors in the 
location of species, or uneven precision in the examination 
of the study area. It is important to note that the data was 
analyzed on a large spatial scale, and was collected for many 
years by many researchers. The results of this study confirm 
that ordinary kriging is a good method for the identification 
of spatial patterns in species richness, as previously noted 
by other studies [4,38–40].

The distribution of the most important areas for rare 
plants occurring in thermophilous forests in Polish territory 
was identified. They are located in the Polish Uplands of the 
southern and southeastern part of the country, and in the 
Sudetic Foreland. In both cases, these are areas with a high 
concentration of calcium in the soil, a favorable microclimate 
on the southern hill slopes and the nearest location to the 
glacial refugia in southern and southeastern Europe [41].

The lowland center of concentration of the studied species 
is located in the young glacial landscape of the Wielkopolska 
and Masuria regions, within the maximum extent of the 

Fig. 2 Thermophilous forest hotspots in Poland identified ac-
cording to original data (a), and geostatistical interpolation (b), 
compared with the distribution of their focal habitats (c). The most 
valuable squares in (a): 1 – Bielinek, 2–3 – Puławy-Kazimierz Dolny, 
4 – Izbica, 5–6 – Zamość-Zwierzyniec, 7 – Bolmin, 8 – Racławice, 
9–10 – Ojców-Bolechowice, 11 – Pieniny. Species richness in b and 
c is expressed by ordinary kriging interpolation. Maximum glacia-
tion extents after Marks et al. [26]: Vistulian Glaciation (115–12 × 
103 years BP), Wartanian Glaciation (210–130 × 103 years BP).

Parts of the study 
area according to the 
glaciation ranges

Interpolated richness of hotspot indicators
>1.0 >2.0 >3.0 >4.0

A % A % A % A %

North of the Vistulian 126 10.8 21 1.8 1 0.1 0 0.0

Between Vistulian 
and Wartanian

32 4.1 1 0.1 0 0.0 0 0.0

South of the 
Wartanian

390 33.4 118 10.1 41 3.5 5 0.4

Tab. 2 The area (km2 × 100) and percentage cover (%) of increas-
ing interpolated richness of hotspot indicators in the three parts 
of the study area distinguished according to the glaciation ranges.
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Vistulian Glaciation [26]. The occurrence of thermophilous 
plants is here connected with the presence of young soils rich 
in calcium and a pronounced topography [42]. Of special 
importance is the Bielinek nature reserve on the steep slope 
of the Odra river valley, which represents the only location of 
Quercetum pubescenti-petreae submediterrianian oak forests 
in the country [43,44]. Analysis of the occurrence of the 
rarest plants from the Polish red list and red book confirms 
the high concentration of endangered forest thermophilous 
flora at this site, in comparison with other lowland hotspots.

The area of central Poland was found to be a regional 
disjunction in hotspots of rare thermophilous forest flora. 
The richness of hotpots and focal habitat indicators was 
found to be low to the south of the extents of Pleistocene 
glaciers (Vistulian and Wartanian), where sandy deposits 
and humid habitats are most common [26]. These areas 
constitute geographic barriers for thermophilous plants.

An analysis of species richness distribution could also be 
useful for defining the possible entry areas of thermophilous 
plants into the Polish territory during their Holocene migra-
tion (Fig. 3), which have been discussed in the literature for 
the last few decades [45–47]. The present study suggests that 
great migration possibilities existed from the Ukrainian 
Uplands and along the northern peripheries of the Carpath-
ians to the Polish Uplands, and from the Pannonian Basin 
through the Moravian Gate and the Beskid Niski Mts (Fig. 3). 
Our analysis also emphasizes the role of the Poprad River and 
the Dunajec river valleys as corridors for the thermophilous 
flora to pass through the Carpathians, which was previously 
suggested by Cyunel [48] and Pawłowski [49]. Taking into 
consideration indicated habitat barriers in the central part 
of the country, the migration to the Wielkopolska and the 
Masuria regions probably took place from northwestern and 
northeastern directions, respectively (Fig. 3), as suggested 
by Paul [47]. The current rate of loss of open forests is so 
great that, in the case of thermophilous forest flora, the 
anthropogenic isolation of forest complexes and limited 
dispersion abilities of plants has resulted in the formation 
of more isolated in situ refugia, and only a minor migration 
of species can be observed.

In order to manage biodiversity, it is important to know 
where it is and how it is arranged at different spatial scales 
[50]. There is an increasing awareness that conservation 
on a small scale is not sufficient to protect the processes 

at a landscape level. The identification of priority areas, or 
hotspots, is a key component of conservation biogeography 
[51,52]. As the results of hotspot detection depend on criteria 
and produce alternative maps of potential conservation 
prioritization [53], other, more structural and functional 
criteria should be incorporated in hotspot detection [1], 
especially in regions which are not rich in endemic species, 
like the study area presented in this paper.

Modeling the distribution of potential habitats for spe-
cies is usually based on a variety of environmental features 
[54–56]. As was shown our study, one of such feature could 
be the presence of habitat indicator species, since areas with 
similar environmental characteristics may serve as refugial 
for groups of species living in a similar habitat. The richness 
of habitat indicators is an expression of bioclimatic and 
soil conditions and biological interactions. The richness 
of habitat indicators can also be understood as a diagnosis 
of the actual state of habitats on a large spatial scale [57]. 
Using a species representative of a habitat as an indicator 
is most justified in areas with well-defined plant or animal 
ecological assemblages. The use of a combination of hotspot 
and habitat indicators could give very informative results on 
regional spatial patterns in flora and fauna.

Fig. 3 Potential post-glacial migration routes of thermophilous 
forest flora into Polish territory on the background of distribution 
of their current hotspots and focal habitats according to Fig. 2. 
Maximum extents of Vistulian and Wartanian Glaciations after 
Marks et al. [26].
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