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Introduction

Helianthus tuberosus (Jerusalem artichoke, topinambur, 
earth apple) is a perennial warm-season species of sunflower 
native to temperate regions of North America that has been 
known in Europe since the 17th century. It is an agricultural 
plant with nutritional, medicinal and energy potential. Its 
tubers are rich in polysaccharide inulin. The species is also 
cultivated for biofuels [1]. A new, cold resistance cultivar 
Albik was selected for further improvement (e.g., more 
intensive growth and cellulose production) through genetic 
transformation with the use of in vitro technique.

Topinambur was investigated in different aspects. Re-
cently, phytochemical studies revealed the bioactive metabo-
lites with medicinal value [1,2]. Microtubers induction in 
tissue culture was used for simulating physiological processes 
leading to underground storage organ formation [3]. Some 
efforts for the successful cryopreservation protocol were also 
undertaken [4]. So far the low efficiency of plant regeneration 

via indirect organogenesis or somatic embryogenesis was 
described in the leaf culture of Helianthus tuberosus and 
in anther or root culture of tetraploid interspecific hybrid 
Helianthus annuus × Helianthus tuberosus [5–7].

An in vitro cell and tissue culture induces different cellular 
responses that mediate adaptations under new environmental 
conditions. Cells with a morphogenetic or embryogenic 
potential differ from a non-regenerative callus in several 
features, including cell wall modifications [8]. The formation 
of extracellular strands, fibrils and/or a continuous layer over 
callus cells accompanies the induction of morphogenesis 
in many plants cultured in vitro. This structure, which is 
referred to as extracellular matrix (ECM) or extracellular 
matrix surface network (ECMSN), has been found during the 
early stages of somatic embryogenesis and organogenesis e.g., 
in coconut [8] and maize [9]. The exact role of this structure 
is still not known, but its regulatory and coordinating func-
tions during the early stages of morphogenesis have been 
suggested [8,10–13].

The aim of this study was to establish protocols of cal-
lus induction and then the plant regeneration and to see 
whether ECMSN can be treated as a morphogenic marker 
of the investigated cultivar. This is the first attempt to test 
the morphogenetic ability of topinambur cv. Albik.
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Material and methods

Culture conditions
About 100 mature plants of H. tuberosus cv. Albik, veg-

etatively propagated from tubers obtained from IHAR 
(Radzików, Poland), harvested in Polanka Hallera and 
Modlnica (experimental fields of Jagiellonian University, near 
Cracow, Poland), were the sources of the following explants: 
apical meristems, petioles (10 mm) different leaf segments 
(10 × 15 mm) and 2–3 mm thick stem fragments. Tuber 
and root segments were excluded from the study because 
of high contamination rate: 80–90% in preliminary tests. 
Plant material was surface sterilized for 70 s in 70% ethanol 
and for 10 min in a 50% Ace solution (commercial bleach). 
Media tested in the experiments were based on a modified 
Murashige and Skoog basal medium (MS) [14] supplied 
with: (i) plant growth regulators (PGRs): benzylaminopurine 
(BAP), 2,4-dichlorophenoxyacetic acid (2,4-D), indole-
3-acetic acid (IAA), kinetin (KIN), 1-naphthaleneacetic 
acid (NAA), 2,3,5-triiodobenzoic acid (TIBA), thidiazuron 
(TDZ); (ii) other organic and inorganic substances: 2-(N-
morpholin) ethanesulfonic acid (MES), potassium nitrate 
(KNO3), putrescine; (iii) different sucrose concentrations 
(1, 2, 3 or 12%). Media were solidified with 8% agar (Difco, 
USA). In total, 36 different media were tested (Tab. 1). For 
statistical analysis, data from selected media (from six callus 
induction media and three regeneration media) were used 
(Tab. 2). After two or four weeks of culture, calli obtained 
on media 2a, b, c, 4, 8, 14 were transferred onto media 17c, 
25a, b for indirect regeneration (Tab. 2). Leaf segments were 
cultured on 90 mm Petri dishes (5 per one Petri dish) and 
other explants were grown on 55 mm Petri dishes (5 petioles 
or stem fragments or 4 apical meristems per one Petri dish) 
at 26 ±3°C in darkness for the induction of calli or in a 16/8 h 
photoperiod under cool-white fluorescent tubes (60–90 mol 
photons m−2 s−1) for regeneration. The contamination rate 
(bacterial or fungal) was ca. 10%.

Histological analysis
For histological analysis stem fragments, after 0, 6 and 

10 days of culture on MS with 1.0 mg l−1 2,4-D (medium 
3b, Tab. 1), were used. The material was fixed in 5% glu-
taraldehyde in a 0.1 M phosphate buffer, pH 7.2 at room 
temperature for 2 h, washed four times in the same buffer 
and dehydrated in a graded ethanol series and kept overnight 
in absolute ethanol. Then, the material was embedded in 
Technovit 7100 (2-hydroxyethyl-methacrylate) according to 
manufacturer’s instructions (Heraeus Kulzer). The material 
was sectioned into 5 µm with a rotary microtome (Microm, 
Adamas Instrumenten), stained with 0.1% toluidine blue O 
(TBO) and mounted in Entellan synthetic resin (Merck). 
Some sections were stained using periodic acid Schiff (PAS)/
TBO double staining. The semi-thin sections were treated 
with 0.5% periodic acid for 10 min and rinsed in distilled 
H2O for 3 min. Sections were then stained with Schiff ’s 
reagent for 30 min and rinsed in a rinsing solution (1 mol/l 
HCl 5 ml + 10% Na2S2O5 5 ml + distilled H2O 100 ml). Then, 
the sections were stained with 0.1% TBO. In the PAS reaction, 
the total carbohydrates of insoluble polysaccharides (e.g., 
starch and cellulose) stain magenta to purplish red. TBO is 

routinely used as a counterstain in order to improve contrast. 
Microscopy sections were photographed with a Zeiss Axio 
Cam MRe digital camera. The images were processed with 
Zeiss Axio Vision 3.0 software.

SEM analysis
Cultured stem fragments were prefixed in 5% glutaral-

dehyde (in 0.1 M phosphate buffer, pH 7.2) for 2 h at room 
temperature. After dehydration through a graded ethanol 
series, the samples were dried using a CPD system (CO2 
critical point drying), sputter-coated with gold (Jeol JFC-
1100 E ion-sputtering system) and observed with a Jeol JSM 
5410 scanning electron microscope.

TEM analysis
Cultured stem fragments were fixed in 2.5% formaldehyde 

(prepared from paraformaldehyde) and 2.5% glutaralde-
hyde in a 0.1 M cacodylate buffer (pH 7.0) for 2 h at room 

Medium No.
Plant growth regulators and other substances 
(concentration in mg l−1)

Callus induction

1 without PGRs

2a, b, c TDZ (0.25, 0.5, 0.75)

3a, b, c, d 2,4-D (0.5, 1.0, 2.5, 5.0)

4 2,4-D (0.2) + KIN (0.04)

5 2,4-D (0.2) + KIN (0.04) + KNO3 (5000)

6 2,4-D (0.2) + KIN (0.04) + KNO3 (5000) + MES (700)

7 2,4-D (0.2) + KIN (0.04) + putrescine (800)

8 2,4-D (2.0) + BAP (1.0)

9a, b, c, d 2,4-D (0.5, 1.0, 2.5 , 5.0) + BAP (0.5)

10 NAA (0.1) + BAP (1.0)

11 NAA (0.1) + BAP (1.0) + KNO3 (5000)

12 NAA (0.1) + BAP (1.0) + putrescine (800)

13 NAA (1.0) + BAP (1.0)

14 NAA (0.25) + IAA (0.025) + BAP (0.25)

15 BAP (0.1) + TIBA (500)

16 BAP (2.0)

Regeneration

17a, b, c without PGRs, 1, 2 or 12% sucrose

18 TDZ (1.0)

19 BAP (0.5)

20 2,4-D (0.5) + KIN (1.0)

21 2,4-D (0.5) + KIN (2.0)

22 NAA (0.1) + KIN (0.5)

23 NAA (0.1) + BAP (0.2)

24 NAA (0.5) + BAP (0.1)

25a, b BAP (1.5), 3% or 12% sucrose

Tab. 1 Media tested in experiments, based on MS [8] supple-
mented with different plant growth regulators (PGRs), additional 
substances and different sucrose concentration (3% in all media 
except for 17 and 25 b).
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temperature. The samples were rinsed four times in the same 
buffer (15 min each) and post-fixed in buffered 1% OsO4 at 
4°C overnight. After rinsing in distilled water, explants were 
treated with 1% uranyl acetate for 1 h, dehydrated in a graded 
acetone series and embedded in Spurr’s resin. Ultrathin sec-
tions were cut on a Sorvall MT-2B ultramicrotome, stained 
with uranyl acetate and lead citrate, and examined with a 
Philips CM 100 transmission electron microscope. Control 
semi-thin sections were post-stained with 0.1% TBO.

Statistical analysis
All of the analyses and graphs were done in the R envi-

ronment for statistical computing [15]. The data from six 
different media and five different explants (Tab. 2) were 
compared using a pairwise comparison between pairs of 
proportions with a correction for multiple testing (pairwise.
prop.test function from stats library). Confidence interval 
values on bar charts were calculated by tests of proportion 
(prop.test from stats library).

Results

Callus induction and culture
Single callus cells were observed on stem discs (Fig. 1a) 

one week after inoculation. In subsequent days of culture, 
calli proliferated on callus induction and regeneration media 
on all explants used (Tab. 2 and Fig. 1b–d). The color of 
the callus depended on light conditions. In the dark, calli 
were white or cream, while in the light they turned green. 
The efficiency of callus production was explant and me-
dium dependent. The frequency of callogenesis from apical 
meristems was 100% on almost all of the media. Fragments 
of stem and leaf blades responded with a lower frequency 
(Fig. 2a–c) and were not influenced by explant position on 
the medium (dorsal or ventral surface). The lowest response 
was noted when petioles (Fig. 2a–c) were used as explants. 
Callus tissue was produced without morphogenic response 
on all of the media used (Tab. 2).

Histological and ultrastructural studies
Histological analysis of callus induced from stems indi-

cated that cell proliferation started primarily in the cortex 
(Fig. 3a). In subsequent days of the culture, centers of intense 
callus proliferation were visible in the cambial zone, phloem 
and xylem. The PAS reaction did not reveal starch grains in 
the cells of explants (data not shown). SEM observations con-
firmed that callus cells were induced in the cortex (Fig. 3b) 
and vascular bundles of stem discs. In well-developed callus, 
cells differed conspicuously in size and shape (Fig. 3c). Some 
parts of stem-derived callus (Fig. 3d) were covered with a 
membranous structure.

Ultrastructural studies of callus cells analyzed using TEM 
showed the presence of a wavy plasmalemma, profiles of a 
rough endoplasmic reticulum, dictyosomes, ribosomes and 
polysomes, which are typical for plant cells with a high level 
of activity (Fig. 3e–g). Fibrillar and globular structures were 
present in the intercellular spaces. Numerous mitochondria 
were located near lipid bodies. Parenchymatous, senescent 
cells showed a sequestration of the cytoplasm (Fig. 3e) and 

Medium 
No.

PGR 
(concentration 
in mg l−1) Explant

Callus induction

No. of explant 
used/No. of 
explants with 
callus induction

2a TDZ (0.25) apical meristem 16/16

petioles 75/0

leaves ventral 75/0

leaves dorsal 25/0

stem 25/0

2b TDZ (0.50) apical meristem 14/14

petioles 75/0

leaves ventral 75/0

leaves dorsal 25/0

stem 75/21

2c TDZ (0.75) apical meristem 16/16

petioles 75/0

leaves ventral 75/0

leaves dorsal 25/0

stem 75/19

4 2,4-D (0.2) + 
KIN (0.04)

apical meristem 15/15

petioles 75/12

leaves ventral 75/48

leaves dorsal 75/45

stem 75/27

8 2,4-D (2.0) + 
BAP (1.0)

apical meristem 16/16

petioles 75/4

leaves ventral 76/54

leaves dorsal 75/57

stem 75/69

14 NAA (0.25) + 
IAA (0.025) + 
BAP (0.25)

apical meristem 16/15

petioles 75/6

leaves ventral 75/45

leaves dorsal 75/60

stem 75/30

Regeneration

No. of explant 
used/No. of 
regenerants

17c without PGRs + 
12% sucrose

callus 110/0

25a BAP (1.5) callus 110/0

25b BAP (1.5) + 12% 
sucrose

callus 105/0

Tab. 2 Selected media and explants used for callus induction and 
organogenesis. Media based on MS [8] with plant growth regulators 
(PGRs) and different sucrose concentration (3% in all media except 
for 17c and 25b). Media are coded as in Tab. 1.
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vacuoles containing electron-dense deposits, probably tan-
nins (data not shown). On the surface of callus, fibers that 
extended from the outer cell wall were visible (Fig. 3h,i). 
The structure of the material covering the outer cell wall was 
different than the filling in the intercellular spaces. Compact 
material, composed of fibers and clumps, was located on the 
cell wall (Fig. 3g–i), whereas fibrillar and globular structures 
were present in the intercellular spaces (Fig. 3e,f).

Discussion

In our experiment we induced callogenesis in in vitro 
cultures of H. tuberosus cv. Albik. However, during the time 
of the culture, callus remained non-regenerative and no 
shoots, roots or somatic embryos were observed. Most of the 
regeneration media used in this study were previously tested 
with H. tuberosus or interspecific Helianthus hybrids where 

Fig. 1 Explants of stem discs (a–c) and leaf blade (d,e) cultured on MS medium with 0.5 mg l−1 KIN and 0.1 mg l−1 NAA. Explant at 
inoculation (a). Callus on explant surface after 4 (b,c) and 3 weeks of culture (d,e). Scale bars: 3 mm (a–c); 1 mm (d,e).

Fig. 2 a–c Effect of explant and medium on callus induction. Groups labelled with the same letter do not differ significantly (P > 0.05) 
by test of proportion. Error bars indicate 95% confidence intervals. Type of explants: M – meristems, P – petioles, LV – leaves ventral, 
LD – leaves dorsal, S – stem. Media are coded as in Tab. 1.
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Fig. 3 Transversal section of stem explant after 10 days of culture (a) stained with TBO; high magnification of the cortex zone; visible 
epidermis (ep), cells of calli (asterisks) and remnants of collenchyma (co). SEM images of explants after 10 days (b) and 4 weeks (c,d) 
of culture. Cross sections of stem (b); visible epidermis (ep) and cells of callus (asterisks) in the cortex. Well-proliferated calli with cells 
differ in size and shape (c) and covered with ECMSN (ecm; d). TEM images of explants (e–i). Ultrastructure of meristematic cells (f), 
parenchymatic, senescent cells (e) and outer cell wall (g–i). Note wavy plasmalemma (pl), cell wall (cw), fibrillar and globular structures 
in the intercellular spaces (is). e White arrowheads indicate the sequestration of the cytoplasm and vacuole (v). f Visible numerous 
mitochondria (mt) near lipid bodies (lb). g–i Fragments of the surface of callus with a heterogenous ECMSN (ecm) with fibrills and 
clumps; black arrowheads indicate fibers extending from the outer cell wall. Visible lammellae of the cell wall (g). Scale bars: 50 µm 
(a,c,d); 200 µm (b); 1 µm (e,f); 0.2 µm (g–i).
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plant regeneration by direct or indirect pathway was obtained 
[5–7,16–18]. In topinambur and sunflower cultures, the 
results highly dependent on the genotype, explant type and 
components of the nutrient medium [5–7,16–18]. Leaf seg-
ments of the interspecific hybrid H. annuus × H. tuberosus 
were successfully used for morphogenesis and somatic 
embryogenesis [16]. However, in previous experiments on 
topinambur and sunflower hybrids [5], the frequency of 
formation of somatic embryos was very low. Bianchi et al. [6] 
reported that some genotypes of the genus Helianthus were 
able to regenerate plants with a high frequency, while other 
showed a complete absence of morphogenetic competence. 
A strong genotype-dependent tissue response under in vitro 
conditions has been reported for some taxa of monocots 
and dicots [6,19,20].

Our results showed that callus was induced in the cortex 
and vascular bundles. It is commonly known that cambium 
cells are pluripotent vascular stem cells and retain the ability 
to divide [21,22]. A study by Rose et al. [23] on the origin 
of roots in leaf cultures of Medicago truncatula, showed that 
vein procambial cells stimulated by auxin gave rise to cal-
lus cells that ultimately generated root meristems. Further 
studies on regeneration in M. truncatula also revealed that 
somatic embryos in leaf cultures originated from procam-
bial cells or dedifferentiated mesophyll cells that become 
totipotent [24]. Cell proliferation within the bundle sheath 
was also observed in leaf explants of H. occidentalis [25], 
leading to rhizogenesis.

The surface of non-regenerative callus derived from the 
cultivar Albik of H. tuberosus was covered with a mem-
branous structure, similar to the ECMSN that has been 
reported in plant tissue cultures of different species [26–28]. 
Detailed TEM studies of topinambur calli have confirmed 
the extracellular deposition of fibrillar material and have 

revealed the presence of globular structures and fibers in 
the intercellular spaces. A similar heterogeneous ECMSN 
was reported in oilseed rape where osmiophilic granules 
were associated with fibers extending from the outer cell 
wall of embryogenic callus cells [29]. ECMSN was primar-
ily linked to the acquisition of embryogenic competence 
[8,30] and in several species can serve as an early structural 
marker of somatic embryogenesis [29,31,32]. The presence 
of extracellular material also accompanied the induction of 
organogenesis [12,33]. However, in the present studies, in 
spite of the occurrence of ECMSN the calli were not morpho-
genetic. The extracellular layer covering callus cells, which 
is not involved in the regeneration process, has previously 
been reported during androgenesis in wheat [34], somatic 
embryogenesis in banana [35] and clover cultures [36]. The 
role of ECMSN cannot be generalized but it is evident that it 
is formed on the surface of cultured in vitro tissues regard-
less of its morphogenetic competence. Therefore, we agree 
with the suggestion that has been made by several authors 
[26,30] that ECMSN formation could be a stress response of 
plant tissues that is triggered by specific culture conditions 
and that covering callus with extracellular material could 
provide protection against external factors.

Conclusions

Based on the previous reports and the results of the 
present experiment, it is evident that: (i) the morphogenic 
capacity of callus in Helianthus tuberosus is strictly genotype 
dependent, (ii) cultivar Albik is recalcitrant in in vitro 
regeneration, (iii) ECMSN is not a morphogenic marker 
in this cultivar.
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