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ABSTRACT
On the basis of Kedem-Katchalsky equations a mathematical analysis of volume flow (J,) of a binary solution
through a membrane (M) is presented. Two cases of transport generators have been considered: hydrostatic (Ap)
as well as osmotic (AI) pressure difference. Based on the Poiseuille’s law we derive the formula for the membra-
ne filtration coefficient (L) which takes into account the membrane properties, kinetic viscosity and density of
a solution flowing across the membrane. With use of this formula we have made model calculations of the filtra-
tion coefficient L, and volume flow J, for a polymer membrane in the case when the solutions on both sides of the

membrane are mixed.
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INTRODUCTION

Synthetic polymer membranes have been widely applied
in membrane transport research, engineering and also in

Nomenclature

J, — solute flux (mol m2 s71)
J — volume flow (m s7!)

v

Ap, AT1 —hydrostatic and osmotic pressure differences (Pa)

L, — hydraulic coefficient (m3 N s°1)

[0} — solute permeability coefficient (mol N°! s7)

o — reflection coefficient (—)

c —mean concentration (mol n3)

Ac — concentration difference (mol m)

¢, ¢, —solutions concentrations (mol m3)

Py»P, —solutions pressures (Pa)

dpldc - concentration density gradient (kg mol™")

p,» P —density of water and solutions (kg mol™")

R — gas constant (J mol' K1)

T — absolute temperature (K)

g — gravitational acceleration (ms2)

n,, N —dynamic viscosity coefficients of water and solutions, respec-
tively (Pa s)

Vi V —kinetic viscosity coefficients of water and solutions, respec-
tively (m? s71)

Vv — volume of solution (m3)

S — cross section of the membrane (m2)

n — number of pores (-)

r — pore radius (m)

At — time (s)

medicine, in separation techniques field. Transport through
such membranes is well described by the Kedem-Katchal-
sky (K-K) equations for volume flow (/) and solute flow
(/). These equations have been derived from the principles
of linear non-equilibrium thermodynamics (LNET) and
can be well applied to both synthetic and biological mem-
branes. The classical version of the K-K equations applies
to homogeneous membrane systems with well mixed solu-
tions. For the case of poorly stirred solutions the lack of
mixing leads to a formation of concentration boundary lay-
ers (CBLs) in the vicinity of the membrane. Such layers
participate in the transport and therefore the K-K equations
have to be modified.

The aim of this paper is to investigate the membrane
transport described by the K-K equations for the case in
which the transport is generated by the hydraulic pressure
gradient (Ap) as well as the osmotic pressure gradient
(ATT). We consider the special case of ideal mixing of solu-
tions. On the basis of the Darcy’s law and the Poiseuil-
le’s law we derive the formula for the hydraulic coefficient
Lp (also called filtration coefficient), as a function of dyna-
mic viscosity, for fixed concentration of the solution flo-
wing across the membrane. To test the validity of the for-
mula and to get more insight into the membrane transport
we consider a model of a cell, which consists of a single
membrane that separates two binary solutions, having con-
centrations ¢, and ¢, and pressures p, and p, respectively.
We assume that the following conditions are fulfilled for
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the cell: ¢, > ¢,, p; > p, and T = const. From the Van’t Hoff
equation the osmotic pressure difference reads AIl = RTAc
(Kedem and Katchalsky 1958; Katchalsky and Curran
1965; Kedem and Katchalsky 1963; Gumiiski 1962; Doto-
wy et al. 2003) and the hydrostatic pressure difference Ap
= p, — p,- For this model we also derive the formula for vo-
lume flow J and include the influence of the concentration
of the solution on L[7 and J,. We discuss the results for two
cases of transport: generated either by Ap or AIl. The re-
sults presented below may apply to polymer membranes,
used in medicine, and aqueous glucose solutions for the ca-
se when the transport is stationary and the solutions on
both sides of the membrane are well mixed.

The Kedem-Katchalsky equations

Membrane transport for binary non-electrolyte solutions,
generated by the hydrostatic pressure difference (Ap) and
the osmotic pressure difference (AIT), can be described by
the Kedem—Katchalsky equations. The K-K equations have
been derived from the principles of linear thermodynamics
of irreversible processes. Such transport is described by the
equations for the volume flow, (J,) and the solute flow (/)
(Kedem O., Katchalsky A. 1958; Katchalsky A., Curran
P.F. 1965; Kedem O., Katchalsky A. 1963):

J,=L,Ap—L cAll (D

J,=oAll+(-c)c/, ()
_ S|
where ¢ stands for mean concentration, € ~ 5 (c1 + cz)

and (Lp, o, o) are coefficients of filtration, reflection and
permeation, respectively. The above equations have widely
been used in research on substance permeability through
artificial and biological membranes (Ginzburg and Kat-
chalsky 1963). The application of the K-K equations in
their classical version is limited to membrane systems with
two-component solutions, sufficiently diluted and well stir-
red (Koter 2005; Bacchin et al. 2006; gle;zak et al. 2004,
Jarzyfiska 2005).

The membrane system
The system under consideration consists of a 1-membra-
ne cell, presented in the sketch in Figure 1. The membrane

Cq Cz

Jy

v

P1 P2

x=0 X =Ax

Fig. 1. Sketch of a membrane cell: M is the homogeneous membrane of
thickness Ax; ¢, and c, are the concentrations of solutions in compart-
ments separated by the membrane, Ac = ¢| — ¢,; p, and p, are the values
of the hydraulic pressure in appropriate compartments, Ap = p, — p,; J, is
the solution volume flux through the membrane M.
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(M) divides the cell into two compartments filled with bi-
nary non-electrolyte solutions of concentration ¢, and c,
and pressures p, and p, in isothermal conditions. The
osmotic pressure difference between the solutions (AIl) is
given by Van’t Hoff equation AIT = RT (¢, — ¢,), and the
mechanical pressure difference is Ap = p, — p,. The mem-
brane is characterized by following parameters: filtration
coefficient (Lp), reflection coefficient (o) and permeability
coefficient ().

Transport across the membrane depends on the rate of
mixing of the solutions. When the solutions are poorly or
not at all mixed, the effect of forming of boundary layers
h and [ in the vicinity of the membrane occurs and both the
membrane and the layers (4 / M / [) participate in transport.
In the case when the solutions are mixed, only the mem-
brane takes part in transport. In this paper we restrict ourse-
Ives to the second case assuming equally mixed solutions.
We also assume that the transport is stationary.

Derivation of the filtration coefficient (L ) formula

The filtration coefficient describes the ability of a pore
environment to permeate fluid when a pressure gradient
exists, while filtration is the fluid ability to permeate thro-
ugh the pore environment.

In 1856 Henry Darcy, on the basis of his experiments,
derived the linear filtration law, called nowadays Dar-
cy’s law. He showed that for laminar flow the volume of
fluid (V), permeating through a pore medium, is proportio-
nal to the cross-section area (S) of the medium, flow time
(#), the hydraulic pressure drop (Ap) and the filtration coef-
ficient (L)), called also the hydraulic conductivity of
a membrane. According to the Darcy’s law the filtration
coefficient describes not only the pore medium itself, but
also the medium-fluid pair e.g. membrane-solution, mem-
brane-water and so on.

Let us consider the Kedem-Katchalsky equation (1) for
the volume flow J through a membrane. When the flow is
forced only by hydrostatic pressure difference Ap (AIl =
0), (1) reads

J,=L,Ap 3)

One can rewrite Eq. (3) in the form
_AV @
OSA )

where AV is the volume of the solute permeating through
the area S of the pore in time At.

On the basis of the Poiseuille’s law the volume AV is
expressed as follows

_ 1 AprinAt
n 8

AV , 5)
where

AV — volume flow rate,

r— inner radius of the capillary (pore),

n — fluid dynamic viscosity coefficient,

Ap — pressure difference at the ends of the capillary,

[ — length of the capillary.

The Poiseuille’s law describes the relation between volu-
me flow rate, viscosity, pressure gradient, that causes the
fluid flow, and the capillary parameters (its length and ra-
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dius). For the stationary, laminar flow of viscous fluid th-
rough a cylindrical pipe (i.e. a pore with constant, circular
cross-section) the volume flow rate is proportional to the
pressure gradient along the pipe and thus to the pressure
difference at the ends of the pipe.

Taking into (for n pores) account Eq. (5) equation (4) ta-
kes on the form
2

r
J = n— 6
. &nAp (6)
From (3) and (6) we get
r2
L =n , 7
e @)

where Ax is the thickness of the membrane and 7 is the dy-
namic viscosity of the fluid. In order to determine the value
of L for an arbitrary solution and a membrane one can use
the value of the filtration coefficient obtained for water and
the same membrane L, taking into account the change
of viscosity and density while changing concentration of
investigated solution. From Eq. (7) the hydraulic conducti-
vity of the membrane and solvent (water) reads
% 2
L pw =n s
8n,,Ax
where 1, is the viscosity of water (solvent), n is the num-
ber of pores within the membrane.

®)

If we express the fluid kinetic viscosity (v) by fluid dyna-
mic viscosity (77) and fluid density (p)

_n
V== ©
p
the formula for the membrane filtration coefficient L for
the solution with a given concentration, is of the form

vaW

L,=L,, "

n,
oo L,=L,, n (10

where

v — solution kinetic viscosity,

p — solution density.

Next, inserting (10) into (1) the K-K equation for the vo-
lume flow J is given by

J, =LPWV\W)%(AP—G ATT) | (11

In order to test Eq. (11) we have performed the calcula-
tions for the membrane cell presented in Figure 1. A poly-
mer (cellophane) membrane, that may be used in medicine,
separates two aqueous glucose solutions having concentra-
tions ¢, and c¢,. The transport parameters of such a mem-
brane are (Slezak et al. 2004): hydraulic conductivity L,=
5x10712 m3 N-1s71, reflection coefficient o = 0.068, permea-
bility coefficient @ = 8x10°10 mol x N-'s-!. The difference
of concentrations of the solutions in two compartments,
forcing the transport through the membrane, is Ac = 0.1
mol m3, ¢, =nAcn,=1,2,3, ..., 201; kinetic viscosity and
density in solutions for corresponding concentrations fulfill
the conditions v ,) = v, + nAv and p,, = p,, + nAp, where
v, = 1.012x10° m? x 57! and p,, = 998 kg x m> are water
kinetic viscosity and water density, respectively; the values
of the increase of kinetic viscosity and density with increa-

ACTA SOCIETATIS BOTANICORUM POLONIAE 95

sing concentration of the solution are Av = 0.00004 m? X s°!
and Ap = 0.006 kg x m3, respectively. The values of Av
and Ap have been empirically determined (Slezak et al.
2004). The remaining parameters are as follows: gas con-
stant R = 8.31 J x mol'! K'!; gravitational acceleration g =
9.81 m x s2. All calculations have been carried out for iso-
thermal conditions at temperature T = 295 K.

RESULTS AND DISCUSSION

Dependence Lp = f(c)

In Figure 2 we present the results obtained for the filtra-
tion coefficient L _as a function of concentration of the so-
lution c¢. The calculations have been carried out with the
use of Eq. (10) with the threshold value of water filtration
coefficient: L, = 5%10712 3 N1l
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Fig. 2. Graphic illustration of the dependence L,= f(c). The membrane
filtration coefficient is inversely proportional to the concentration of the
solution.

Dependence J, = f(L 11)

The results for Lp as a function of the solution flux
) Ap=0 flowing through the membrane are presented in Fi-
gure 3. Transport is generated by the osmotic pressure gra-
dient AIT (Ap = 0) for the case when the solutions concen-
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m
tration difference changes from Ac =0—- to Ac =100
m

The calculations of / have been carried out using Eq. (11).
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Fig. 3. Graphic illustration of the dependence |J‘,| = f_(Lp). The gradient
of the solutions concentration, causing the flow, changes in the range
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Fig. 4. Graphic illustration of the dependence J, = f(Ap), AIl = 0. All

plots are obtained for different values of solutions concentration with the

assumption ¢, = ¢, (mol / m?3). The influence of the solution concentration

on the filtration coefficient Lp is taken into account.

Dependence J, = {(A,)ary

The dependence of the volume flow J,, on the mechanical
pressure difference Ap is presented in Figure 4. In this case
AIT = O thus the only source of transport is the hydraulic
pressure. The five plots correspond to the different values
of the solutions concentrations with ¢, = ¢,. We see that the
volume flow decreases with increasing concentration of the
solutions.

Dependence J, = {(A) Ap=0

In this section we show how the volume flow J, depends
on the solution concentration for the case when the flow is
generated by the osmotic pressure difference AIT (Ap = 0).
In Figure 5, plot 1 shows the results obtained for the case
when the value of the filtration coefficient L does not de-
pend on the concentration of the solution (Lp = const), plot 2
the results for the case when this dependence is taken into
account.

CONCLUSIONS

In this paper we have presented the results of the model
calculations of the Kedem-Katchalsky equations applied to
a I-membrane cell filled with a non-electrolyte binary so-
lution. To be specific, we have used the polymer membra-
ne applied in medicine and the well-mixed aqueous gluco-
se solution. On the basis of the Darcy’s and Poiseuil-
le’s laws we have derived new the formula for the filtration
coefficient (L,) and then, using the K-K equations, the for-
mula for the volume flow J,. It was found out that Lp de-
pends essentially on the properties of the membrane and
the fluid properties, i.e. it is inversely proportional to kine-
tic viscosity and density of permeating fluid. The obtained
results are in agreement with the Darcy’s law.
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Fig. 5. Graphic illustration of the dependence J, = {(Ac) Ap=0° Ap=0. Plot 1
is taken for L, = const, plot 2 with the influence of the solution concentra-
tion on L, 4.9977x10° 12 p3N-1s, ..., 4.5786X10712 m3N-1sL.

It tunes out that, the filtration coefficient L, not only de-
pends on physical or chemical properties of the membrane
itself but also on the properties of the fluid flowing through
the membrane.

LITERATURE CITED

BACCHIN P., ESPINASSE B., BESSIERE Y., FLETCHER
D.F., AIMAR P. 2006. Numerical simulation of colloidal di-
spersion filtration; description of critical flux and comparison
with experimental results, Desalination 192: 74-81.

DOLOWY K., SZEWCZYK A., PIKULA S. 2003. Biological
membranes, page 109. Scientific Publisher “Slask™ Katowi-
ce—Warszawa. (in Polish)

GINZBURG B.Z., KATCHALSKY A. 1963. The frictional coef-
ficients of the flows on non-electrolytes through artificial
membrane. J. Gen. Physiol. 47: 403-418.

GUMINSKI K. 1962. Thermodynamics of Irreversible Processes.
PWN, Warsaw. pp 57-63. (in Polish)

JARZYNSKA M. 2005. Mechanistic equations for membrane
substance transport are consistent with Kedem — Katchalsky
equations. J. Membr. Sci. 263: 162-163.

KATCHALSKY A., CURRAN P.F. 1965. Non-equilibrium Ther-
modynamics in Biophysics. Harvard University Press, Cam-
bridge, MA.

KEDEM O., KATCHALSKY A. 1958. Thermodynamics analysis
of the permeability of biological membranes to non-electroly-
tes. Biochim. Biophys. Acta 27: 229-246.

KEDEM O., KATCHALSKY A. 1963. Permeability of composi-
te membranes. Trans. Faraday. Soc. 59 (Part 1-3).

KOTER S. 2005. The Kedem-Katchalsky equations and the sieve
mechanism of membrane transport. J. Membr. Sci. 246: 109-111.

SLEZAK A., DWORECKI K., JASIK-SLEZAK J., WASIK J.
2004. Method to determine the critical concentration Rayleigh
number in isothermal passive membrane transport processes.
Desalination 168: 397-412.



		2012-02-27T21:11:54+0100
	Polish Botanical Society




