THE REORGANIZATION OF ROOT ANATOMY AND ULTRASTRUCTURE OF SYNCYTIAL CELLS IN TOMATO (*LYCOPERSICON ESCULENTUM* MILL.) INFECTED WITH POTATO CYST NEMATODE (*GLOBODERA ROSTCHIENSIIS* WOLL.)

SYLWIA FUDALI, WŁADYSŁAW GOLINOWSKI
Department of Botany, Warsaw Agricultural University
Nowoursynowska 159, Building 37, 02-776 Warszawa, Poland
e-mail: sylwia_fudali@sggw.pl
(Received: May 17, 2006. Accepted: June 4, 2007)

ABSTRACT
The sequence of anatomical and ultrastructural events leading to the syncytium development in tomato roots infected with *Globodera rostochiensis* was examined. The syncytia were preferentially induced in cortical or pericycle cells in the elongation zone of root. They developed towards the vascular cylinder by incorporation of new cells via local cell wall breakdown. After surrounding primary phloem bundle and reaching xylem tracheary elements syncytia spread along vascular cylinder. Roots in primary state of growth seemed to be the best place for syncytium induction as syncytia formed in the zone of secondary growth were less hypertrophied. At the ultrastructural level syncytial elements were characterized by strong hypertrophy, breakdown of central vacuole, increased volume of cytoplasm, proliferation of organelles, and enlargement of nuclei. On the syncytial wall adjoining vessels the wall ingrowths were formed, while the syncytial walls at interface of phloem were considerably thickened. They lacked of functional plasmodesmata and did not form any ingrowths. Using immunofluorescent labelling and immunogold labelling methods tomato expansin 5 protein was localized in nematode infected roots. The distribution of LeEXP A5 was restricted only to the walls of syncytia. The protein distribution pattern indicated that LeEXP A5 could mediate cell wall expansion during hypertrophy of syncytial elements.

KEY WORDS: cell hypertrophy, expansin, susceptible interaction, syncytium development.

INTRODUCTION

Globodera rostochiensis is a quarantine pest which causes substantial loses to European agriculture (Haydock and Evans 1998). This obligatory and sedentary endoparasite belongs to cyst nematodes and infects roots of some economically important Solanaceous plants including potato and tomato. Cyst nematodes induce profound changes in the developmental programme of root cells, leading to the formation of the multinucleate and metabolically active feeding site called syncytium. The syncytium reveals features of transfer cells and is a sole source of nutrients for developing nematode (Jones and Northcote 1972). It develops from one single cell selected by the infective juvenile (J2) of the nematode (Wyss 1992). Syncytium formation includes two main processes: incorporation of new cells by local dissolution of cell wall and the hypertrophy of incorporated elements. Organization of apoplastic and symplastic components of cells incorporated to the syncytium is dramatically changed. The typical features of syncytial elements are dense cytoplasm, enlarged nuclei, proliferation of organelles including plastids, mitochondria and endoplasmic reticulum, numerous small vacuoles and formation of wall ingrowths on the walls adjacent to xylem tracheary elements (Golinoswki et al. 1996). After syncytium induction the juvenile passes through three molts: to J3, J4 and finally to adult developmental stage.

It is generally accepted, that nematode via its secretions manipulates with plant gene expression what results in the reprogramming of root cell differentiation. The main efforts to understand the interaction between parasite and its host are identification and characterization of nematode secretions (Vanholme et al. 2004) and identification of plant genes differentially expressed in syncytia (Gheysen and Fenoll 2002).

During syncytium development plant cell walls undergo extensive rearrangements, like localized dissolution during cell wall opening formation, expansion during hypertrophy of syncytial elements, synthesis of wall ingrowths and a general thickening. Due to the complexity and synchronization of these processes, it has been postulated that genes of plant origin are responsible for cell wall modifications accompanying syncytium development (Jones 1981).

Expansin superfamily of plant genes encodes extracellular proteins that have unique ability to induce cell wall loo- sening, probably by disruption of non-covalent bonds be-
between cell wall matrix polysaccharides and cellulose microfibrils (McQueen-Mason and Cosgrove 1994). They are implicated in many developmental processes where cell wall modification occurs: from cell expansion during plant growth (Fleming at al. 1999) to cell wall dissolution during fruit ripening (Rose et al. 1997). Recent studies have demonstrated, that tomato expansin gene LeEXP A5 is up-regulated in nematode infected tomato roots and based on in situ transcript localization and immunolocalization study it has been proposed that LeEXP A5 plays a role in the hypertrophy of syncytial elements (Fudali et al. 2004).

This paper describes anatomical and ultrastructural modifications during induction and development of syncytia induced by *G. rostochiensis* in susceptible tomato roots. To provide additional information of possible function of expansin 5 in syncytium development supplementary immunolocalization studies of LeEXP A5 are presented in the context of detailed histological and ultrastructural analysis.

MATERIAL AND METHODS

Tomato roots infected with nematodes used in all experiments were obtained from axenic culture. Tomato seeds (*Lycopersicon esculentum* Mill., cv. Money Maker) were surface-sterilized in 70% (v/v) ethanol for 3 min, 30% (v/v) commercial bleach for 10 min and rinsed three times with sterile water. Seeds were germinated on Petri dishes containing 1.2% (w/v) agar at 20°C in the dark. After 5 days seedlings were transferred into Petri plates with medium containing 3.2 g/l Gamborg’s B-5 Basal Medium with Minimal Organics (Sigma) supplemented with 2% (w/v) sucrose and 1.5% (w/v) agar (pH 6.2). Plants were grown at 18°C at 16/8 h light/darkness photoperiod. After 10 days aerial parts of plants were cut off and each root system was inoculated with about 500 freshly hatched J2 juveniles under sterile conditions. The culture of *Globodera rostochiensis* Woll. (patotype Ro1 Mirenboos, provided by The Laboratory of Nematology, Wageningen University, The Netherlands) and plant inoculation was carried out according to Goverse et al. (2000). After inoculation plates were kept at 18°C in the dark. Tomato roots were observed in vivo using binocular to determine the exact time of the syncytium induction. Tomato root pieces containing syncytia of 1-5 dpi (days post induction, corresponding to the J2 nematode developmental stage) and 10-14 dpi (corresponding to the late J3 nematode developmental stage) were excised, fixed and embedded for ultrastructural microscopic observation and immunolocalization studies, separately.

Structural studies

Samples were pre-fixed for 2 h in 2% (w/v) paraformaldehyde and 2% (w/v) glutaraldehyde in 0.05 M sodium cacodylate buffer (pH 7.2) and post-fixed for 2 h in 2% (w/v) osmium tetroxide OsO₄ at 4°C. After dehydration in a graded ethanol series and propylene oxide samples were embedded in epon resin. Series of transverse sections (2.0 μm thick) were cut on dry glass knives using a Leica RM 2165 microtome and stained with 1% (w/v) Crystal Violet for 30 s. The anatomy of syncytia was analyzed under light microscope Olympus AX 70 “PROVIS” equipped with digital camera Olympus DP50 and documented using Analy-SIS software. The ultrathin sections (90-110 nm) were cut with the diamond knife using ultramicrotome Ultracut E (Reichert-Jung), stained with uranyl acetate and lead citrate and examined under electron microscope FEI 268D “Morgagni”. For photographic documentation digital camera SIS Morada and iTEM software were used.

Immunofluorescent-labelling

Polyclonal anti-EXP A5 antibodies were raised in rabbit against 14 aminoacid fragment from C-terminus of the expansin 5 protein. The antibodies were purified using Protein A Antibody Purification Kit (Sigma) according to the manufacturer’s procedure and their specificity was verified in Western Blot analysis. Samples were fixed in 4% (w/v) paraformaldehyde in 50 mM PIPES buffer (pH 6.9) for 2 h, dehydrated in ethanol and embedded in BMM resin (80% (v/v) butylmethacrylate, 20% (v/v) methylmethacrylate, 0.5% (w/v) benzoinoiphetether, 10 mM DTT). The semi-thin sections were adhered to Silane-Prep Slides (Sigma) at 45°C on a slide warmer. BMM resin was removed with acetone and unspecific binding sites were blocked with 3% BSA in TBS for 1h. Then, slides were incubated with anti-EXP A5 antibody diluted to 1:100 in TBS for 1h. Slides were rinsed with TBS and incubated with secondary goat anti-rabbit antibody conjugated with Alexa Fluor 488 (Molecular Probes) diluted to 1:1000 in 1% (w/v) non-fat dry milk in TBS for 1h. Slides were mounted using Immuno-Fluore Mounting Medium (ICN Biomedicals) and were observed under Olympus AX 70 “PROVIS” microscope equipped with U-M61002 filter set. The results were documented as described for anatomical examination.

Immunogold-labelling

The material was fixed and dehydrated as described for immunofluorescent labelling and subsequently infiltrated in a series of ethanol: LR-white mixtures and embedded. Samples (90-110 nm thick) were cut on Utracut E (Reichert-Jung) ultramicrotome and transferred onto formvar coated nickel grids, Sections were blocked in 2% (w/v) BSA in TBS for 1h and subsequently incubated in diluted 1:100 anti-EXP A5 antibody in TBS. After washing with TBS buffer and incubation in a secondary mouse anti-rabbit gold-conjugated antibody (10 nm grains) diluted 1:50 with TBS the grids were washed with water. Sections were counterstained with uranyl acetate and examined under transmission electron microscope as described for ultrastructural analysis of syncytia.

RESULTS

Induction of syncytium

The infective juveniles of *Globodera rostochiensis* (J2) invaded the roots preferentially in the root elongation zone just behind the root tip. Then, J2s migrated in the root cortex along the vascular cylinder. After selection of initial syncytial cell (ISC) syncytium started to develop by incorporation of neighbouring cells. As a result a large volume of the root was occupied by multinucleate nematode feeding structure consisting of hypertrophied root cells. Figures 1-12 present serial cross sections of three different roots containing syncytia: 5 dpi (days post induction) syncytia (Figs 1-4), 14 dpi syncytia induced in the root of primary
Figs 1-12. Cross sections of the tomato roots containing syncytia induced in the cortex.
Figs 1-4. Sections through syncytium induced in the root being in the primary state of growth (5 dpi) corresponding to J2 developmental stage. Figs 5-8. Sections through syncytium induced in the root being in the primary state of growth (14 dpi) corresponding to the J3 developmental stage. Figs 9-12. Sections through syncytium induced in the root being in the secondary state of growth (14 dpi), associated with J3 juvenile.
The syncytia were serially cut, but only sections from one halves of them located in one direction from the nematode head are presented. Bars 100 μm.
Abbreviations: C – cambium; CB – “cortex bridge”; ISC – initial syncytial cell; N – nematode; Ph – phloem bundle; SX – secondary xylem; X – xylem tracheary elements; syncytial elements derived from the pericycle and vascular parenchyma are marked with asterisks.
state of growth (Figs 5-8) or 14 dpi syncytia induced in the root of secondary state of growth (Figs 9-12).

In most cases, syncytia were induced at the opposite site of the phloem bundle. Usually cortical cells (Figs 2 and 5) or rarely pericyclic cells were selected by juveniles as ISC. Accidentally, the J2s invaded roots in the zone of lateral roots formation, at places where secondary thickening had already been initiated (Fig. 10).

In the wall of ISC, at the place where nematode stylet was inserted a feeding plug was formed and nematode secretions were released into this osmophilic structure (Fig. 13). In the protoplast of the ISC close to the feeding plug electron dense material and faint membranoous structures, formed probably by nematode secretions, were present. The protoplast of ISC underwent numerous alterations and the first wall openings were already formed. In the close vicinity of nematode head the cytoplasm was condensed and contained many organelles, including endoplasmic reticulum, mitochondria, plastids with starch grains and dictyosomes. The region of the central vacuole was occupied by granular material and numerous vesicles (Fig. 15). In addition, a feeding tube was already present in the condensed cytoplasm of the ISC, indicating that the nematode had started to withdrawn nutrients from its host. Feeding tube was associated with cisternae of endoplasmic reticulum and with faint membranous structures (Fig. 15).

The first cell wall openings were formed at the site of existing plasmodesmata (Fig. 14). In the region of wall opening formation the plasmodesmata were gradually widened. In their vicinity paramural bodies (membrane invaginations containing aggregates of many small vesicles) were formed and cytoplasm contained many cisternae of

Figs 13-15. Ultrastructure of the initial syncytial cell (ISC) in infected tomato root (1 dpi).
Fig. 13. Fragment of the ISC with feeding plug (FP) present in the cell wall of the ISC. Close to the feeding plug osmophilic material (asterisk) and tubular structures (T) are formed. CW – cell wall; ER – endoplasmic reticulum; GA – Golgi Apparatus; M – mitochondrion; N – nematode; St – stylet. Bar 2 µm.
Fig. 14. The first cell wall openings formed in the wall of ISC with involvement of existing plasmodesmata (arrow heads). CW – cell wall; ER – endoplasmic reticulum; GA – Golgi Apparatus; M – mitochondrion; Nu – nucleus; PB – paramural body. Bar 1 µm.
Fig. 15. Fragment of the protoplast of ISC. The cytoplasm of ISC close to the nematode head (N) is dense, CW – cell wall; ER – cisternae of endoplasmic reticulum; FT – feeding tube; G – granular material in the region of central vacuole; M – mitochondrion; Pl – plastids; T – tubular structures. Bar 10 µm.
rough endoplasmic reticulum, mitochondria and Golgi Apparatuses. The wall openings were frequently formed in close vicinity to each other with involvement of neighbou-
ing plasmodesmata.

Development of syncytium

Syncytium induced in the cortex developed centripetally towards vascular cylinder by incorporation of a row of cor-
tex cells (Figs 1 and 2). Successive wall openings were for-
med and widened between neighbouring cells. Through the wall gaps protoplasts of adjacent cells fused resulting in multinucleate syncytium. The cells incorporated into the
syncytium become strongly hypertrophied and contained dense cytoplasm (Figs 1-4). The syncytial elements con-
necting ISC with vascular cylinder are called “cortex bridge” (Sembner 1963). When pericyclic cells were fused with the “cortex bridge” and syncytium reached a phloem
bundle, it enlarged further by incorporation of undifferen-
tiated parenchymatous cells and enclosed phloem bundle.
Then, new cells of stelar parenchyma were incorporated in-
to the syncytium and it reached contact to xylem tracheary
elements (Fig. 2). At this point, syncytium started to expand longitudinally basipetally and acropetally, along conduc
tive tissues by successive incorporation of vascular parenchyma cells (Figs 3 and 4). As a result, the syncytium at 5 dpi, corresponding to nematode J2 stage, consisted of
two well distinguishable parts: the older part located next to the nematode head and the recently incorporated part
located distally from the ISC. The part of syncytium located
next to the nematode head was composed of cortical, peric-
cyclic and parenchymatic cells, while distal part of syncy-
tium located away from the ISC was composed of vascular parenchymatic cells only. The most distal parts of syncy-
tium consisted of only weakly hypertrophied parenchyma
cells (Fig. 4).

In older developmental stage (syncytium associated with
the J3 nematode stage), the syncytium spread mostly lon-
gitudinally, equally in acropetal and basipetal directions,
along conductive tissues by incorporation of new vascular parenchyma cells. It proliferated by incorporation of new
cells via cell wall openings formation and enlargement of
incorporated cells. Both, the size and cellular composition of syncytium at 14 dpi (corresponding to the J3 develop-
mental stage) correlated with the localization of the ISC
within the root. The most hypertrophied syncytia were those
induced in the cortex in roots being in the primary state of
growth (Figs 5-8). The largest syncytial elements with the
widest cell wall openings were present among cells incor-
porated at the beginning of syncytium development, which were derived from cortex and pericycle (Fig. 5). The
large part of volume of such syncytia was formed by hy-
pertrophied parenchymatous cells located along the vascu-
lar cylinder over a long distance (up to 1010 μm from ISC).
If metaxylem vessels have not yet been differentiated they
were incorporated into the syncytium (Figs 6 and 7) and
syncytium occupied both sides of primary xylem pole. Al-
though pericyclic and vascular parenchyma cells incorpo-
rated into the syncytium were smaller in size than the cells of the “cortex bridge”, it seems that the fold of hypertrophy
was similar in both cases or even lower in the latter case.
On the cross sections the diameter of syncytial cells deri-
ved from cortex was approximately 1.5-2.0 times greater than the diameter of not affected cortical cells (Fig. 5),
while the diameter of syncytial elements derived from the
vascular parenchyma was increased up to 5.0 times, when compared with parenchymatous cells of vascular cylinder
not incorporated into syncytium (Fig. 8). The parenchyma-
tics of vascular cylinder neighboring with distal syncy-
tial elements divided.

The syncytium induced in the cortex in the roots where
the process of secondary growth has already been initiated
was less proliferated (Figs 9-12). The “cortex bridge” was
composed only of a single row of cortical cells localized
behind the primary phloem bundle. The part of syncytium
bordering to the “cortex bridge” was composed of few pe-
ricyclic cells that surrounded the phloem bundle and re-
ached the primary xylem elements. The oldest part of syncy-
tium occupied a half of the stele at the level of the ISC. In
the part of the root containing syncytial elements located
next to the nematode head the secondary growth of the root
was impeded (Figs 9 and 10). The tracheary elements of
secondary xylem differentiated solely at the opposite site
of primary xylem bundles where syncytium did not deve-
lop. The cambium cells reached the syncytium elements,
but they did not surround them and did not form a continu-
ous ring. The part of syncytium situated in some distance
from nematode head was composed of vascular parenchy-
ma cells only (Fig. 11). The hypertrophy of cells derived
from vascular parenchyma was not hampered. In this re-
region of root the cambium reached syncytium edges located
in the stele. The parenchymatic and pericyclic cells not in-
corporated into the syncytium divided. The most distal part
of syncytium was composed of several (one to three) stron-
gly hypertrophied parenchymatic cells located within the
vascular cylinder (Fig. 12). The differentiated cambial cells
almost surrounded the most distal syncytial elements and
secondary tracheary elements development in their vicinity
became more symmetric.

The ultrastructure of developing syncytium

On establishment of the syncytium (3 dpi) cells incorpo-
rated into it had a different proplastol organization. In
general, the characteristic features of syncytial cells of J2 ju-
veniles were lack of the central vacuole, gradually increa-
sed volume of the cytoplasm and proliferation of organel-
les (Fig. 16). Some of syncytial elements contained elec-
trontranslucent flocculent material at the place formerly
occupied by central vacuole. Numerous small irregularly
shaped vacuoles and vesicles were scattered in this mate-
rial. In other syncytial elements the central vacuole region
was filled by the granular material not surrounded by a
continuous membrane. In such cells dense cytoplasm was
localized along syncytial wall. The numerous organelles:
mitochondria, plastids containing starch grains, cisternae of
endoplasmic reticulum present in both forms: rough and
smooth, and Golgi Apparatuses were located mainly next
to the wall of syncytial elements (Figs 17 and 19). The pro-
liferation of syncytium was accompanied by changes in the
cell walls of incorporated cells. First of all, the wall open-
ings were progressively widened (Fig. 17). The edges of
wall stubs surrounding a gap in the wall were rounded and
through the existing opening the protoplast of adjacent
cells had fused. In close vicinity of the enlarging wall open-
ings the numerous organelles were located. In addition,
the syncytial plasmalemma at places adjacent to xylem tra-
cheary elements formed many invaginations, which gradu-
ally enlarged and contained fibrillar material (Fig. 18). Many plasmalemma invaginations filled with diverse material were also associated with walls of enlarging syncytial elements (Fig. 19). The smaller invaginations had homogenous content, while larger ones contained fibrillar material.

The ultrastructure of syncytial elements corresponding to J3 juveniles (10 dpi) was characterized by a more homogenous protoplasm organization (Fig. 20). The syncytial elements were occupied by dense cytoplasm with areas filled with less condensed material not surrounded by any membrane or partially surrounded with fragments of a single membrane. In the syncytial protoplast numerous vacuoles were present. Some of them contained small amounts of fibrillar material. The endoplasmic reticulum proliferated and cisternae of smooth reticulum were regularly arranged in characteristic circular, concentric whorls (Fig. 20). The nuclei of cells incorporated into the syncytium were enlarged and acquired irregular ameboid shapes. Along the syncytial walls numerous mitochondria and elongated, cup-like shaped plastids were located. The wall openings were progressively widened. In addition wall ingrowths were exclusively formed at the syncytial wall abutting xylem tracheary elements (Fig. 21). At early stages of their formation they had a finger-like shape, were not branched and they were encircled with plasmalemma. The syncytial wall bordering to other root cells was considerably thickened. The wall between sieve elements and syncytium seemed to lack of functional plasmodesmata, because the new layers of secondary wall were deposited also at places where plasmodesmic connection existed (Fig. 22). On the serial sections only non-continuous plasmodesmata starting at the side of sieve elements and blindly ended in the syncytial wall were occasionally found. The wall layers of the thickened wall appeared to be loosen locally as they contained electron translucent regions with regularly arranged fibrils. With such relaxed wall areas invaginations of cell membrane containing different material and paramural bodies were associated (Fig. 23).

Localization of LeEXP A5 in nematode infected roots

The specificity of the polyclonal anti-EXP A5 antibody was checked in the Western Blot analysis (data not shown). The temporal and spatial distribution pattern of expansin 5 protein was studied on semi-thin sections using immunofluorescent localization. In the roots containing young syncytia at 3 dpi (corresponding to the J2 stage) the fluorescent signal was observed in walls of enlarging syncytial elements (Fig. 24). There was no specific fluorescence in the walls of cortical cells surrounding developing syncytium. On sections of roots containing syncytia at 10 dpi different expression pattern was observed (Fig. 25). The fluorescent signal was present only in the walls of distal syncytial elements. There was no labelling in the walls of cells surrounding expanding syncytium. After immunogold-labelling the gold particles were evenly distributed in the walls of young syncytia (at 3 dpi, data not shown) and in the walls of peripheral elements of syncytia at 10 dpi (Fig. 27). There was no labelling at the edges of the syncytial walls bordering with cell wall opening (Fig. 28).

As the negative control in the immunolocalization experiments primary anti-EXP A5 antibody was replaced with pre-immune serum. No signal was found on semi thin sections and ultra-thin sections subjected to this control immuno-labelling procedures (Figs 26 and 29, respectively).

DISCUSSION

Anatomy and ultrastructure of syncytium

The complex interactions between cyst nematode and its host results in the formation of syncytium, a type of organ providing nutrients for the developing nematode. Depending on host-parasite combination different cells are selected as the ISCs. The beet cyst nematode *Heterodera schachtii* usually induce syncytia in pericyclic or procambial cell abutting xylem tracheary elements in *Arabidopsis thaliana* roots (Golinowski et al. 1996), while *Heterodera avenae* usually selects the ISC from pericycle in wheat roots (Grymszaewskia and Golinowski 1991). In soybean roots parasitized by *Heterodera glycines* syncytia are induced in cortical, pericycle or phloem parenchyma cells (Endo 1991). In this investigation it was observed that *G. rostochiensis* usually induces syncytia in the cortex. These observations agree with previous histological studies carried out on potato (Jones and Northcote 1972) and tomato (Sembdner 1963). Several reports indicate, that the differences in sites of syncytium induction are related to differences in the susceptibility of analyzed cultivars (Golinowski and Magnusson 1991; Melillo et al. 1990). It was also observed that type of cell selected as ISC correlates strictly with future sex of the associated juveniles (Golinowski et al. 1996; Sobczak et al. 1997). Although the selection of the ISC is crucial for successful plant-nematode interaction the molecular factors of mutual recognition between nematode and plant crucial for the selection of ISC have not been identified yet.

The existing plasmodesmata were shown to be initial sites for cell wall opening formation during syncytium induction in model *A. thaliana* plants infected with *H. schachtii* (Grundler et al. 1998). It seems that at early sta-

Figs 16-19. Ultrastructure of the syncytium at 3 days post induction (Figs 16-19) and at 10 days post induction (Figs 20-23).

- **Fig. 16.** Fragment of syncytium. Central vacuolar region is filled with electrondense transvacuolar material (triangles) or with granular material (G). M – mitochondrion; Nu – nucleus; Pl – plastids; SE – sieve elements; V – small vacuoles. Bar 10 μm. Fig. 17. Close to the enlarged cell wall opening numerous plastids (Pl), mitochondria (M), dictyosomes (GA) are present. ER – endoplasmic reticulum; V – vacuole. Bar 5 μm. Fig. 18. The part of the syncytium abutting xylem tracheary element (X), Nu – nucleus; Pl – plastids; M – mitochondrion; Iv – membrane invaginations. Bar 1 μm. Fig. 19. Fragment of cell wall (CW) of syncytial elements. With the syncytial walls numerous membrane invaginations are associated (Iv). Close to syncytial wall plastids (Pl), mitochondria (M) and cisternae of endoplasmic reticulum are scattered (ER). Bar 1 μm. Fig. 20. Fragment of the syncytium located in the vascular cylinder between xylem tracheary elements (X) and sieve elements (SE). In the syncytial cytoplasm many vacuoles are present (V), the cisternae of smooth endoplasmic reticulum (ER) form characteristic concentric whorls, nuclei (Nu) acquire ameboid shape, plastids (Pl) and mitochondria (M) are located mainly close to the syncytial wall. Bar 10 μm. Fig. 21. The interface between syncytium and xylem (X). Characteristic cell wall ingrowths (CI) are formed on the syncytial wall. Bar 2 μm. Fig. 22. The interface between syncytium and phloem. Obstructed plasmodesmata (Pl) is visible in the wall, starting at the side of sieve element (SE), Pl – plastid; ER – endoplasmic reticulum; Nu – nucleus. Bar 1 μm. Fig. 23. Cell wall invaginations and paramural bodies associated with cell wall between syncytium and phloem (SE), CW – cell wall; Iv – membrane invaginations; PB – paramural body; Pl – plastid. Bar 1 μm.
ges of syncytium development in tomato roots infected with *G. rostochiensis*, the wall openings are also formed in the same way, by gradual widening of existing plasmodesmic connections.

The presented results concerning cell alterations prior to their incorporation into developing syncytia: cell expansion, proliferation of organelles and loss of central vacuole are generally consistent with results previously described by other authors (Jones and Northcote 1972; Golinowski et al. 1996; Golinowski and Magnusson 1991; Melillo et al. 1990). Characteristic ultrastructural changes are supposed to be adaptations of syncytial elements for intensive processes of synthesis and transports that enable them to function as an effective structure delivering nutrients for the nematode. The observed enlargements of nuclei in syncytial elements are probably a result of endoreduplication of DNA (Niebel et al. 1996). The proliferation of smooth endoplasmic reticulum occurring in latter developmental sta-
ges seems to be essential for compatible plant-nematode interaction. In many cases, syncytia induced in resistant plants contain only a weakly developed system of endoplasmic reticulum (Grymaszewska and Golinowski 1998; Sobiczak et al. 2005). Golinowski et al. (1996) proposed that smooth endoplasmic reticulum being the place of synthesis of lipids plays an essential role in nematode nutrition and proper development. According to observation, that cytoplasm of endoplasmic reticulum form aggregations at site of stylet insertion and that they are connected with feeding tubes (Endo 1991; Sobiczak et al. 1999), it has been postulated that system of endoplasmic reticulum may establish also a unique network which transports synthesized substances directly to the developing nematode (Hussey et al. 1994). The function of numerous wall invaginations containing homogenous material or paramural bodies associated with syncytial wall is still a matter of speculation. The probability that they are artifacts has been excluded, because these structures were repetitively observed in the same regions at the same developmental stages of syncytia (Golinowski et al. 1996). The paramural bodies have been implicated in the processes such as cell wall synthesis during syncytial wall thickening (Rice et al. 1985) or vesicular transport (Tanchak and Fowke 1987; Kronestedt-Robards and Robards 1991).

Root regions just above root tips and primordia of lateral roots are known as natural plant sink tissues, which symptomatically import photoassimilates from phloem to maintain growth and development of the root system (Oparka et al. 1994). Böckenhoff et al. (1996) using fluorescent dyes and confocal microscopy revealed that solutes transported via phloem are effectively unloaded into the syncytia. The localization of syncytium induction site within the root elongation zone just behind the root tip ensures that syncytia induced there will be efficiently and quickly supplied with nutrients that will be further withdrawn by juveniles. The anatomical and ultrastructural features of syncytium suggest that developing syncytium competes with non-affected root tip cells for photoassimilates. In tomato roots, *G. rostochiensis* usually chooses cortical or pericyclic cells localized next to the phloem bundle for syncytium induction and syncytia relatively quickly reach phloem and xylem (2-3 dpi). As syncytium develops by incorporation of new pericyclic and vascular parenchyma cells the phloem bundle is entrapped among syncytial elements what prevents the leakage of transported assimilates into other root cells and ensures large surface at interface between phloem and syncytium. In a model interaction between *A. thaliana* and *H. schachtii* the differentiation of new phloem elements around developing syncytium was even observed (Golinowski et al. 1996; Hoth et al. 2005). However the way of solutes transport from phloem to syncytium still remains enigmatic, because there are no direct ultrastructural evidences for neither apoplastic nor symplastic way of phloem unloading into nematode feeding site. First of all, cell wall ingrowths were observed only at the syncytial wall adjoining xylem tracheary elements but there were never observed at walls abutting sieve elements what could intensify short-distance apoplastic transport. It was postulated that syncytia are symplastically isolated and that observed plasmodesmata are non-functional because they were occluded by cell wall deposits (Grundler et al. 1998). However Hoth et al. (2005), using transgenic *Arabidopsis* plants expressing GFP fusion constructs under companion cell specific promoter (AtUC2), demonstrated that transport of macromolecules between phloem and syncytia occurs and concluded that plasmodesmatal connections exist between phloem and syncytia. Recent studies of Hofmann and Grundler (2006) provided additional support for postulated symplastic connections between syncytia and phloem. However, electron microscope observations presented in this paper do not support this hypothesis as at phloem-syncytium interface only plasmodesmata, which seems to be apparently non-functional, were observed on serial sections. The cell wall of syncytial elements is considerably thickened including fragments of syncytial walls neighbouring with phloem elements. The new wall layers were synthesized and deposited also at places of plasmodesmata and as a result the syncytium seems to be also devoid of pre-existing symplastic connections. In addition formation of new secondary plasmodesmata between syncytium and phloem have never been observed and described. The third and the most intriguing mechanism of phloem unloading remained is endocytosis (Oparka and Prior 1998) and this way of solute translocation from phloem into the syncytia should also be taken into consideration.

The presented results indicate that the extent of syncytium proliferation depends not only on the type of ISC selected but also in which root zone it is induced. The cortical or pericyclic cells in root hair zone just above the root tip seem to be the best place for syncytium induction. This place is a well-established nutrient sink, but also because it contains cells that seem to be easily subjected to dedifferentiation. Contrary, induction of syncytium in the root being in the stage of secondary growth resulted in poorly developed syncytium consisting of weakly hypertrophied cells. In this part of the root system phloem unloading occurs selectively at lateral root primordia. Moreover, cells of roots being in the stage of secondary thickening are less susceptible to syncytium induction.

Function of EXP A5 during syncytium formation

Previously it was shown that the expression pattern of Le EXP A5 at both transcript and protein levels is strongly correlated with the process of syncytium expansion (Fudali et al. 2004). It was also proposed that EXP A5 mediates cell wall expansion during hypertrophy of syncytial elements. In this paper, we presented additional results of immunolocalization and observation of syncytium anatomy that support this hypothesis. At the onset of syncytium development all cells incorporated into syncytium hypertrophied, while in later stages the hypertrophy of syncytial elements occurred only in the recently incorporated cells derived from vascular cylinder. Notably, it was observed that extend of hypertrophy of recently incorporated cells in distal part of syncytium is higher (approximately 5 times) than extend of hypertrophy of the “cortex bridge” cells (approximately 1.5-2.0 times). Immunofluorescent-labelling revealed that distribution pattern of expansin 5 protein follows the expansion in syncytia. The fluorescent signal was observed in all syncytial walls of young syncytia (3 dpi) while in the older syncytia (10 dpi) high amounts of investigated protein were exclusively detected in the peripheral part of syncytium that was derived from vascular parenchyma. The additional immunogold-localization experiments excluded that expansin 5 may contribute to cell wall
opening formation, as gold particles were never observed at the place where wall dissolution occurred. The presented immunolocalization results agree with previous Norneth Blot experiments which demonstrated that expansin 5 is expressed abundantly in tomato fruit at stages characterized by rapid cell expansion (Brummell et al. 1999). Interestingly, it was demonstrated recently that expansin 5 is also up-regulated in tomato roots infected with root-knot nematode *Meloidogyne javanica* (Gal et al. 2006). Root-knot nematode induces in infected roots a different type of feeding organs called “giant cells”. Silencing of *LeEXP A5* expression led to the hampered development of root knot nematode, indicating that plant expansin gene is prerequisite for successful parasitism. Cell hypertrophy accompanying syncytium development is one of the determinants of successful nematode development, as syncytia induced in resistant plants are usually less hypertrophied than the ones induced in compatible host (Grymaszewska and Golinowski 1998; Rice et al. 1985). Numerical analysis performed by Golinowski et al. (1996) revealed that increased volume of syncytia is mainly due to the hypertrophy of incorporated cells rather than their number. Thus, *LeEXP A5* gene seems to be a good target for silencing, when constructing plants resistant to cyst nematode.

It would be interesting to check in the future which molecular factors are responsible for activation of expansin 5 during plant-parasitic nematode interaction. There are at least three reasons, why auxins seem to be a good candidate. First of all, previous experiments indicated that expansin expression is regulated by phytohormones including auxin (Catala et al. 2000). Secondly, expansins have a pH optimum for cell-wall extension of about 4 and auxins are implicated in cell wall acidification during cell growth (McQueen-Mason et al. 1992; Rayle and Cleland 1992). Thirdly, syncytium induction and development is accompanied by local increase in auxin concentration and it was suggested that auxin may promote changes occurring in cells during its fusion with the expanding syncytium (Goerver et al. 2000; Karczmarek et al. 2004).

ACKNOWLEDGEMENTS

This research was supported by Doctoral Grant of Polish Ministry of Education and Science (2 P06R 030 28) and 5th Framework Programme of the European Union “NONE-MA” (QLK-CT-1999-01501).

LITERATURE CITED

