ANATOMY AND ULTRASTRUCTURE OF SPUR NECTARY OF GYMNADENSIA CONOPSEA (L.) ORCHIDACEAE

MAŁGORZATA STPIĘCZYŃSKA¹, JANUSZ MATUSIEWICZ²

¹Department of Botany, Agricultural University
Akademicka 15, 20-950 Lublin, Poland

²Subdepartment of Instrumental Food Analysis, Agricultural University
Akademicka 12, 20-950 Lublin, Poland

(Received: February 16, 2001. Accepted: September 28, 2001)

ABSTRACT

The anatomy and the ultrastructure of spur nectaries of Gymnadenia conopsea at different developmental stages were investigated. The secretory epidermis surrounded the inside of spur and formed many unicellular papillae, which significantly enlarged the secretory surface. At the activity stage the epidermal cells contained characteristic plastids with well developed intraplasmidial membrane system and numerous osmophilic globules. The contact of plastids and endoplasmic reticulum indicates a possibility of the involvement of these structures in the secretory processes. The cell wall and the cuticle did not form a barrier for the secreted nectar and no pores or cracks were visible in the cuticle covering secretory papillae.

KEY WORDS: anatomy, ultrastructure, nectary, Gymnadenia conopsea, Orchidaceae.

INTRODUCTION

The fragrant orchid is a species visited by moths as well as butterflies (Faegri, van der Pijl 1971). The insects are attracted by the intensive scent of the flowers and the presence of nectar filling the nectary spur. Such spur-shaped nectaries, formed by the fusion of the proximal part of labellum, appear also in another European orchids such as Anacamptis pyramidalis (Proctor, Yeo 1975), Limodorum abortivum (Figueiredo, Pais 1992), Platanthera bifolia (Stpięczyńska 1997), which are also pollinated by Lepidoptera. In cantharophilous (beetle-pollinated) flowers of Coeloglossum viride nectar is secreted in the short spur and additionally, there are two small nectar glands on the basal part of labellum. Surprisingly, the spur of Orchis mascula does not contain nectar at all (Proctor, Yeo 1975).

In spite of the similar origin of spur nectaries, the studies conducted so far revealed some differences in their anatomy and ultrastructure. These are probably connected with a degree of specialisation of nectary tissue and secretory processes operating there (Figueiredo, Pais 1992; Pais, Figueiredo 1994; Stpięczyńska 1997).

The aim of this study was the examination of the anatomy and ultrastructure of Gymnadenia conopsea nectary, with special attention paid to the changes occurring in secretory cells during different stages of their activity.

MATERIAL AND METHODS

The flowers of the fragrant orchid were collected in the first decade of July 1995-1996, from plants growing in a natural stand near Chelm.

The flowers representing four developmental stages were analysed: stage I – 2 mm bud with 1 mm spur (about 5 days before anthesis), stage II – 3 mm bud with spur of 4 mm (2 days before anthesis), stage III – flowers at the first day of anthesis, stage IV – flowers at the fourth flowering day with first symptoms of senescence.

The observations were conducted using light (LM) and electron microscope (TEM and SEM). For LM and TEM, dissected nectaries were cut with a razorblade into the fragments of about 1 mm and fixed in buffered 3% glutaraldehyde with paraformaldehyde, at room temperature, for 5 h (Karnovsky 1965). After several rinses in phosphate buffer (pH 7.0) nectaries were postfixed in 2% osmium tetroxide for 2 h at 0°C. Dehydrated material was embedded in epoxy resin (Spurr 1969). Ultrathin sections for TEM were stained with uranyl acetate followed by lead citrate (Reynolds 1963) and observed in TESLA electron microscope at 60 kV. Semithin sections for LM were stained with methylene blue – azure B and 0.05% toluidine blue 0, which stains lignified walls bluish green (O'Brien et al. 1964, Hayat 1975). Some free hand sections from fresh material were treated with JKJ to ascertain starch
Figs 1-4. Anatomy of nectary spur, LM.
Fig. 1. Cross section of nectary spur. Papillae of epidermal cells and numerous vascular bundles in parenchyma, ×85.
Fig. 2. Fragment of spur section in distal part (plastids in secretory cell marked by an arrow), ×350.
Fig. 3. Transverse section of secretory epidermis forming unicellular papillae, ×950.
Fig. 4. Section of spur’s proximal part, epidermis without papillae, ×400.

Abbreviations to Figs 1-13
storing and with Sudan III — for the presence of lipids or cutinized walls. Additionally, the presence of lignin was tested using of phloroglucinol with HCL (Gerlach 1972).

For SEM intact spurs fixed as above were cut each along its axis. After dehydration in ethanol series and acetone the surface of nectaries was examined with TESLA scanning electron microscope at 25 kV. Fresh, unfixed material was also investigated in SEM – the observations were conducted at the voltage 5 kV.

RESULTS

The nectary spur of G. conopsea was 25-30 mm long and 0.7 mm in diameter. The traces of nectar appeared inside the day before anthesis. The nectar production reached the maximum on the second day of flowering and the secretory activity was extremely high in the afternoon.

The LM observations revealed the occurrence of distinct secretory epithelium. It was formed of axial epidermal cells surrounding the inside of the spur (Fig. 1). Secretory cells contained a large nucleus, numerous globoid plastids, 2-3 μm in diameter, dense, intensively stained cytoplasm and usually a few small vacuoles. Significant feature of secretory epidermal cells was the formation of numerous short papillae, 20-30 μm long (Figs 2, 3). They were formed in a bud (II stage), with frequency of 190 papillae on 1 mm². Papillae occurred only in the distal part of the spur – to the half of its length. Proximal nectary part was covered by smooth epidermis built of cells, which contained also large nuclei and numerous plastids (Fig. 4). Two subepidermal layers of small parenchyma cells were almost free of plastids. Some of these cells were characterized by large nucleus and dense cytoplasm and the others by thin, partially located cytoplasm and a very large vacuole. Numerous (10-12) vascular bundles were found in the subepidermal parenchyma (Figs 1, 4). In cell walls of secretory epidermis and of parenchyma lignin and cutinized layers were not detected. Parenchyma cells adjoining to the external (abaxial) epidermis did not reveal a secretory character; they were rather large cells with a few typical chloroplasts.

Plastids in secretory cells did not contain starch at any of the investigated stages. TEM observations of cells at the
bud stage showed almost homogenous, electron dense stroma with a few membranes in plastids, whereas at the secretory stage, system of many membranes associated with osmiophilic globules frequently appeared (Figs 5, 6). Large portions of plastid surfaces were attached to the endoplasmic reticulum (ER). Short tubules of ER and mitochondria were present especially near the cell walls of secretory papillae (Fig. 7). The walls in these places irregularly protruded, but typical ingrowths did not occur. Numerous dictiosomes were present in the basal part of secretory cells (Fig. 8). Plasmodesmata were observed exclusively in the walls connecting neighbouring epidermal cells (Fig. 9). Secretory vesicles, fusing with plasmalemma, were found in a close proximity to the uppermost part of papillae cell walls and between the wall and the cuticle the material in the structure similar to the content of secretory vesicles was visible (Fig. 11). Accumulation of the secretion caused forming cuticle protrusions on the papillae surface, however the presence of pores or cracks in the cuticle was not detected (Fig. 10).

At the end of the secretion (stage IV) vacuoles, in some cells very large, stained blue-green with toluidine blue, indicating the presence of phenolic material. Frequently, the nucleus was larger and showed an irregular, lobed shape (Fig. 12). Significant feature of the nectary cells was also an increase in a number of lipid droplets in cytoplasm and osmiophilic globules in plastids. Generally, cytoplasm was brighter and the Golgi apparatus was absent (Fig. 13).

DISCUSSION

The nectary spur of Gymnadenia conopsea revealed some features common with orchid spur nectaries previously described in the literature such as of Limodorum abortivum (Figueiredo, Pais 1992; Pais, Figueiredo 1994) or Platanthera bifolia (Stipczyńska 1997). It is characterized by the presence of secretory epidermis surrounding the inside of the spur, and several layers of parenchyma involved in the transport of pre-nectar. Some differences
however, were also ascertained. Internal (adaxial) epidermis of spur formed numerous papillae, which significantly enlarged secretory surface like in *Platanthera* nectaries, but in *Gymnadenia*, they were about ten times shorter. Secreting nectar caused numerous protrusions of a cuticle covering the surface of papillae walls, but the rupturing of the cuticle was not observed, contrary to *Platanthera* (Stpiczyńska 1997) or *Limodorum* (Figueiredo, Pais 1992) nectaries, where distinct pores were noted.

The significant feature reported in orchid nectaries was the presence of plastids with intraplastidial membranes and with globular, osmiophilic contents. Through the successive stages of the secretory activity, the quantity of lipophilic substances increased. Plastids in *G. conopsea* and *P. bifolia* occurred mainly in secretory epidermis, whereas in *L. abortivum* also in parenchyma. Unusually, the plastids of *G. conopsea* did not contain starch, always present at presecretory stages in previously investigated orchid species. Starch stored in plastids of nectary cells may be used as a source of energy for intensive metabolic processes or – indirectly – as the source of secreted sugars (Durkee et al. 1981; Belmonte et al. 1994). Because starch was absent in nectary cells of *G. conopsea*, sugars secreted there were probably delivered by the phloem sap, and decisively modified in secretory cells. Presumably, that was the reason of an abundance of vascular bundles in such a small nectary in comparison with such larger *Platanthera* spur (Stpiczyńska 1997), which had only two vascular bundles.

Plasmodesmatal contact of secretory cells in a fragrant orchid spur was scant and the transport of pre-nectar along the cell walls probably played a significant role, especially as an apoplastic barrier in the cell walls was not detected. Nectary cells of many other plants were connected by numerous plasmodesmata and symplastic pre-nectar flow was suggested by the authors (Gunning, Hughes 1976; Sawidis et al. 1987; Robards, Stark 1988; Kronestedt-Robards, Robards 1991; Figueiredo, Pais 1992).

Numerous secretory vesicles appearing near plasmalemma and fusing with it might indicate granulocrine secretion operating in *Gymnadenia* nectaries. They probably originated from the membranes of ER frequently occurring in the cytoplasm beneath the cell wall. The close contacts of ER with plastids may indicate the involvement of these structures in the secretory processes. Pais and Figueiredo
(1994) paid also attention to the engagement of plastids in
the nectar secretion, although plastids with intraplasmoidal
membranes filled with lipophilic substances were mainly
noted in other types of secretory tissues – in osmophores,
(Curry 1987), or in resin ducts (Fahn 1988) as a site of
erpenoids synthesis.

Because the plastids did not contain starch, their involve-
mant in sugar metabolism and secretory processes in
Gymnadenia nectaries need more detailed, cytochemical
studies.

LITERATURE CITED

nectary structure and nectar composition in Eccremocarpus
scleror (Bignoniaceae), a hummingbird pollinated plant of cen-

CURRY K.J. 1987. Initiation of terpenoid synthesis in osmopho-
res of Stanhopea anfracta (Orchidaceae): a cytochemical stu-

DURKEE L.T., GALL D.J., REISNER W.H. 1981. The floral
and extrafloral nectaries of Passiflora I. The floral nectary.

FAEGR K., VAN DER PIJL L. 1971. The principles of pollina-

108: 229-257.

FIGUEIREDO A.C., PAIS M.S. 1992. Ultrastructural aspect of
the nectary spur of Limodoron abortivum (L) Sw. Orchidace-

GERLACH D. 1972. Zarys Mikrotechniki Botanicznej. PWRiL,
Warszawa.

of symplastic transport of pre nectar into trichomes of Abutil-

Van Nostrand Reinhold Company, New York, Toronto, Mel-
bourne.

KARNOVSKY M.J. 1965. A formaldehyde – glutaraldehyde fi-
xative of high osmolarity for use in electron microscopy.
J. Cell Biol. 27, 137A.

KRONESTEDT-ROBARS E., ROBARDS A.W. 1991. Exocyto-
sis in gland cells. In: Endocytosis, Exocytosis and Vesicle
Traffic in Plants, Ed. by C.R. Hawes, J.O.D. Coleman, D.E.
Evans. Cambridge Univ. Press.

O’BRIEN T.P., FEDER N., MCCULLY M.E. 1964. Polychromat-
tic staining of plant cell walls by toluidine blue 0. Protoplasma
59: 358-373.

PAIS M.S., FIGUEIREDO A.C. 1994. Floral nectaries from Li-
modoron abortivum (L) Sw. And Epipactis atropurpurea Rafi-
n. (Orchidaceae): Ultrastructural changes in plastids during
the secretory process. Apidologie 25: 615-626.

PROCTOR M., YEO P. 1975. The pollination of flowers, Collins

REYNOLDS R.S. 1963. The use of lead citrate at high pH as
17: 208-213.

ROBARDS A.W., STARK M. 1988. Nectar secretion in Abuti-

SAWIDIS T., ELEPTHEIROU E.P., TSEKOS I. 1987. The floral
nectaries of Hibiscus rosa-sinensis L. II. Plasmodesmatal fre-
quencies, Phytom 27: 155-164.

SPURR A.R. 1969. A low viscosity epoxy resin embedding me-

STPIczynsKA M. 1997. Structure of nectary of Platanthera bi-

ANATOMIA I ULTRASTRUKTURA NEKTARNIKA OSTROGOWEGO
GYMNADENIA CONOPSEA (L.) ORCHIDACEAE

STRESZCZENIE

Anatomię i ultrastrukturę nектarnika ostrogowego gółki długoostrogowej Gymnadenia conopsea (L) budono
w różnych stadiach aktywności sekrecyjnej. Epiderma okalająca wnętrze ostrog tworzyła liczne brodawki znacz-
nie powiększające powierzchnię wydzielniczą. Komórki epidermy charakteryzowała również obecność plastydów
z omyłkowymi globułami w fazie sekrecyjnej. Plastydy te nie promieniły skrob. Kontakt plastydów z retikulum
endoplazmatycznym występował licznie w cytoplazmie wskazuje na możliwy udział tych struktur w procesie
wydzielniczym. Kutykula pokrywająca ściany brodawek nie stanowiła bariery dla wydzielającego się nектaru
i tworzyła ciągłą warstwę na powierzchni komórke.

SŁOWA KLUCZOWE: anatomia, ultrastruktura, nектarnik, Gymnadenia conopsea, Orchidaceae.