CYTOLOGICAL CHANGES IN MERISTEMATIC CELLS OF ALLIUM CEPA L. ROOT TIP TREATED WITH EXTRACTS FROM CALLUS OF CATHARANTHUS ROSEUS (L.) G. DON.

AGNIESZKA PIETROSIUK¹, MIROSŁAWA FURMANOWA¹, ALICJA ŻOBEL²,
MIECZYSŁAW KURAS³, AGNIESZKA MICHALAK³

¹Department of Biology and Pharmaceutical Botany, Medical University of Warsaw
Banacha 1, 02-097 Warsaw, Poland
²Department of Chemistry, Trent University Peterborough
Ontario, Canada, K9J 7B8
³Department of Plant Morphogenesis, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

(Received: December 4, 1998. Accepted: April 30, 1999)

ABSTRACT

The effect of an ethanolic extract from callus of Catharanthus roseus on Allium cepa root cells division was investigated. Two lines: white and green callus, were established on solid B5 medium with IAA 1 mg/l and kinetin 0.1 mg/l. The HPLC analysis of callus extracts showed the presence of indole alkaloids, however not known pharmacologically active alkaloids or derivatives used in semisynthesis (vinblastine, ajmalicine, serpentine, yohimbine, vindoline and catharanthine) have been found. The ethanolic extract of C. roseus callus inhibited the number of mitoses in Allium cepa root tip cells. Short (1-3 hours) treatment resulted in an increase in the index of late prophases, with characteristic light spaces, and the index of metaphases with twisted chromosomes forming an equatorial plate or irregular structures of c-metaphases. At the same time, the percentage of anaphases and telophases decreased significantly. Longer treatment of the root tip inhibited mitotic activity, stopping it completely already after 12 hours. Interphase nuclei became at first denser and homogeneous, eventually their structure became partitioned into zones and formation of chromatins territories, with distinct large nucleoli has been observed. Electron microscope observations revealed well developed rough endoplasmic reticulum and thick, invaginating cell membrane.

KEYWORDS: Catharanthus roseus, callus, alkaloids, mitotic activation, cell ultrastructure.

INTRODUCTION

Catharanthus roseus (L.) G. Don – periwinkle (Apocynaceae) is a medicinal plant which produces a wide variety of indole alkaloids as monomers and bisindoles, many of which show pharmacological activity. Antineoplastic bisindole alkaloids – vinblastine and vincristine – are used as chemotherapeutic agents against cancers such as acute leukaemia and Hodgkin’s lymphoma (Hirata et al. 1994).

Some monomers, for example catharanthine and vindoline, can be used in biosynthesis of the bisindoles via chemical or enzymatic coupling (Kutney 1990). Other monomeric alkaloids used in medicine are ajmalicine, serpentine, yohimbine.

The formation of indole alkaloids in cells and tissues of C. roseus has been investigated in many laboratories. These studies have been focused mainly on establishing different kinds of cultures such as callus, suspension, transformed and untransformed root cultures, followed by phytochemical analysis. Usually the callus tissue is a starting material for suspension culture or induction of plant organs like shoots or roots, but it can be also used as a source of secondary metabolites.

Vinblastine and vincristine were observed in white and green lines of callus of C. roseus during testing of the effect of various growth regulators on induction of green callus in 3-year-old cell lines. The green line had about twice as much of the above mentioned alkaloids as the white one (Loyola-Vargas et al. 1986).

Alkaloid metabolism in cultured leaf tissue and primary callus of C. roseus under a variety of culture conditions was also studied (Morris 1987). Rapid growth of callus was observed after 10-20 days of culture. The two main leaf alkaloids, catharanthine and vindoline, were rapidly metabolised and were found neither in primary callus nor in the original leaf tissue after 40 days of culture. During the callus induction and growth period the alkaloids serpentine and ajmalicine accumulated in the leaf tissue but were predominantly present in the callus. Serpentine was the major alkaloid accumulating in the light whereas ajmalicine was synthesised in the dark.

The callus from young leaf segments of C. roseus was initiated on Murashige-Skoog medium supplemented with naphthalenacetic acid (NAA) and kinetin in the dark. The callus was brown and compact, formed many roots and contained vinblastine, whose presence was confirmed by high performance liquid chromatography and mass spectrometry (Miura et al. 1987).

The eight callus lines of C. roseus callus culture on Linmaier-Skoog (LS) medium supplemented with 2,4-dichloro-
phenoxycetic acid (2,4-D), BAP and coconut milk had been established by other authors (Marfori et al. 1993). They used cultures derived from roots, leaves and flowers of white and pink-purple varieties of C. roseus. Callus was then transferred to LS medium without auxins and cultured for a year. The yield of alkaloids was higher in callus derived from roots of pink-purple variety of perminkle than that of the white one, where it depended on the part of the plant from which the callus originated.

The aim of this work was to ascertain whether there were indole alkaloids present in two green and white lines of C. roseus callus cultured in our laboratory for eight years, we were particularly interested in finding vinblastine, a potential inhibitor of cell division. It acts by inhibiting the assembly of microtubular proteins into spindle microtubules, which produces a metaphase arrest.

The second aim was to investigate the biological activity of an ethanolic extract from these lines of callus.

MATERIALS AND METHODS

Initiation of callus

Callus culture was established eight years ago from the hypocotyls of seedlings of C. roseus developed from seeds received from the Institute of Medicinal Plants in Poznań (Poland). The seeds were surface sterilized by immersion in 70% (v/v) ethanol for 1 min followed by 5% sodium hypochlorite for 15 min, then rinsed several times with sterile water and allowed to germinate at 25°C in the dark in Petri dishes on wet sterile filter paper.

Callus was initiated from hypocotyl fragments on two modifications of solid Gamborg medium (Gamborg et al. 1968) supplemented with: 1) indolylacetic acid (IAA) 1 mg/l; kinetin 0.1 mg/l; 2) 2,4-D 1 mg/l, kinetin 0.1 mg/l described earlier by Morris (1986).

The cultures were incubated in a culture chamber with a photoperiod of 12 h (40 µmol/m²/s⁻¹) and 25 ± 1°C temperature. After 3 weeks of incubation callus was transferred to fresh medium and then subcultured every 4 weeks. Callus taken for cytological studies was eight years old.

Cytological studies

The 70% ethanol extracts of 100 ml were made from 5 g of fresh green callus tissue and 5 g of white callus both cultured on Gamborg (B5) medium with IAA and kinetin. The extraction was performed for 24 hours at room temperature after an initial 5 min boiling to inactivate the enzymes. The extract was evaporated and redissolved in 1 ml ethanol to which 99 ml of water had been added. The extract was evaporated again and redissolved in water (100 ml). The roots of three onions (Allium cepa L.) were grown in distilled water (250 ml flask) in the dark at room temperature. When they reached 3 cm (± 0.5 cm) of length they were placed in a prepared extract of C. roseus callus solution for incubation.

Before incubation (control) and after 1, 3, 12 and 24 hours of incubation, 5 root tips (5 mm) (from every 3 bulbs) were fixed (2 h) in glacial acetic acid: absolute ethanol mixture (1:3). For squash preparation for light microscopy the fixed root tips were macerated and stained in 2% aceticarnine for 2 hours in room temperature by the procedure of Kuraš and Malinowska (1978), Zhang et al. (1996).

The average mitotic index for every fixed root (like above) was characterized by the percent of divisions per thousand meristematic cells per squash preparation.

The phase indices were obtained by counting 200 meristematic cells (of the same squash preparation) being in the process of cell division according to Lopez-Saez and Fernandez-Gomez (1965).

Additionally two roots were always fixed for electron microscopy in a mixture of 2.5% glutaraldehyde with 4% paraformaldehyde, pH 7.2 (phosphate buffer) (Karnovsky 1965).

After dehydrating in a series of alcohols and propylene oxide the samples were embedded in Spurr (1969) resin. Semi-thin (1-2 µm) and ultra-thin (about 80 nm) sections were cut with an LKB ultramicrotome. Semi-thin sections were stained with 0.1% toluidine blue and used for light microscopy (Nikon). The ultra-thin sections were stained for contrast with uranyl acetate and lead citrate according to Reynolds (1963) and analyzed with BS 500 transmission electron microscope.

Statistical evaluation was done by the T Student test.

Determination of alkaloids

Lyophilized C. roseus callus lines (white and green 2 g), previously cultured on solid Gamborg medium (Gamborg et al. 1968) supplemented with IAA 1 mg/l and kinetin 0.1 mg/l after 96 passages (8 years old), were separately used for chemical investigations. The essence of this method is the extraction of dry plant material by a neutral hydroxyl solvent, twofold purification of the alkaloid fraction by salting it out of the water phase at the second stage of extraction, and then alkaloid determination by various chromatographic techniques (Ruszkowska et al. personal information). In our experiment a citrate extract of C. roseus alkaloids (pH 2) was extracted with ethylene dichloride. The remaining water phase was adjusted to pH 6 and then extracted with benzene. The above mentioned extracts were then evaporated to dryness and 2 mg of each dry residue, dissolved in an appropriate volume of methanol, was investigated by high performance liquid chromatography.

Chromatographic separation was performed on a Shimadzu LC-10AD liquid chromatograph equipped with SPD-10A UV spectrophotometric detector and integrator Chromatopak C-R3A. The conditions of isocratic HPLC analysis were: column: (3.9 x 300) µBondapak C18; eluent: methanol/acetonitrile/diammonium hydrogen phosphate solution (pH 6) (3:4:3); flow rate: 1 ml/min⁻¹; detection: wavelength 295 nm (Jung et al. 1992).

RESULTS

Maintenance of callus

Two types of callus were obtained from the hypocotyl of C. roseus after four weeks of incubation on two modifications of Gamborg (B5) medium. The green, compact callus with small roots disappearing after 4 passages was observed on the first (1 B5) modification and very soft, brown, watery callus on the second (2 B5) modification. Green callus was subcultured every 4 weeks on fresh 1 B5 medium and was maintained throughout on this medium. Conglomerates of white cells were formed on the surface of green callus after the 9th passage. During subsequent passages white cell conglomerates were separated and cultured on 1 B5 medium. In contrast to the green line of callus the white line callus was fleshy and loose (Fig. 1A and 1B).

Cytological observation in light and electron microscope

The green callus passed several times on Gamborg (B5) medium supplemented with IAA 1 mg/l and kinetin 0.1 mg/l.
contained well developed parenchymal cells with vessel elements in the middle (Fig. 3A stars).

An alcohol extract of this callus, dissolved in water, induced significant changes in the cellular structure of cells of the root tip in onion after only 1 hour of treatment. After this time the mitotic index was reduced from 12.0 to 5.5% (indicating inhibition of mitoses by almost 55% in comparison to the control) (Fig. 6 and Fig. 2A and 2B). The phase index also changed. In comparison to the control, the index of prophases significantly increased, the metaphases index remained almost unchanged, and the index of anaphases and telophases slightly decreased (Fig. 7).

Among the observed prophases, besides normal ones the same as in control (marked in the Fig. 7 as normal pro- phases), there were numerous prophases (about 35%) in which the chromosomes were thicker and more condensed (compare Fig. 2A, arrows, 2B, asterisk and 3B, black star, 3C, white star). Light spaces (Fig. 3C, thick arrow) and the outlines of nucleoli (Fig. 3C, arrowhead) were visible among chromosomes of abnormal prophases.

Metaphases were also changed. Although some of them appeared normal, as in the control (Fig. 3B, arrow), at least half of them had after treatment shortened chromosomes, either forming a slanted equatorial plate (Fig. 2B, right arrow) or not forming it at all. Chromosomes were observed in characteristic structures of c-metaphases (Fig. 2B, left arrow).

All changes observed after 1 hour of treatment became more distinct after 3 hours of treatment. The mitotic index decreased to 2.3% (Fig. 6 and Fig. 2C). Chromosomes of prophases and metaphases were more condensed (Fig. 3D, arrowhead and arrow). The phase index underwent further changes: prophases constituted more than 80%, of which 50% were abnormal (Fig. 7 and Fig. 3D, arrowhead). The metaphases index was less than 10%, and all metaphases were abnormal, with c-metaphase chromosomes significantly shortened (Fig. 3D, arrow). This resulted in disturbances of the process of anaphases and telophases, leading to aberration, thickening of chromosomes and formation of several nuclei in a single cell (Fig. 3E, thick arrows).

After longer times of incubation (12 and 24 hours), mitotic activity was totally inhibited (Fig. 6 and Fig. 2D and 3F). Although nuclei of interphase cells were still oval, they were distinctly smaller and their structure, previously homogeneous, became more dense, and eventually partitioning occurred leading to formation of characteristic chromatin territories, with very large nucleoli preserved (Fig. 2D and Fig. 3F, stars).

In the electron microscope (Fig. 4 and 5) the structure of chromatin was dispersed without visible euchromocenters.
Fig. 2A. Control, usual frequency of stages of mitosis, normal structure of phase of mitosis: prophase (black arrows) and metaphase (white arrow). Acetoadcohol, acetorceline.

Fig. 2B. One-hour treatment, decreased the number of mitoses with abnormal prohapes (asterisk) and changed metaphases (black arrows). Acetoadcohol, acetorceline.

Fig. 2C. Three-hour treatment. A few mitoses only visible: e - metaphases (black arrow) Acetoadcohol, acetorceline.

Fig. 2D. Twelve-hour treatment. No divisions. Smaller nuclei, compare Fot. 2A and 2D.

Changes in chromatin; more dense with heterochromatin and big nucleoli. Acetoadcohol, acetorceline.

Fig. 2A-2D. Bar 20 µm
Fig. 3A. Green callus with well developed veins containing lignified vessel elements (stars). Paraformaldehyde, semithin section, safranin and fast green. Bar 20 µm
Fig. 3B. Control with normal prophase (black star) and metaphase (black arrow). Acetoalcohol, acetorceine.
Fig. 3C. One-hour treatment. One normal prophase (black star) and one with abnormal condensed chromosomes (white star) with many areas of light spots (thick arrow). Outline of nucleolus (arrowhead). Acetoalcohol, acetorceine.
Fig. 3D. Three-hour treatment. Abnormal prophase with thick and condensed chromosomes with many light spots (arrowhead). Slanted metaphase with shorter chromosomes (arrow). Acetoalcohol, acetorceine.
Fig. 3E. Three-hour treatment. Lost anaphase/telephase chromosomes (thick arrows) which may form later four nuclei. Acetoalcohol, acetorceine.
Fig. 3F. Twelve-hour treatment. Inhibition of divisions. Condensation of chromatin. Big nucleoli (black stars). Acetoalcohol, acetorceine.
Fig. 3B-3F. Bar 20 µm
Fig. 4A. Three hour treatment. Ultrastructure of four cells. Nuclei contain dispersed chromatine and heterogeneous structure of nucleous (star). Second cell from the top contains one large telophase group of chromosomes and three small groups which are formed possibly from chromosome pieces is seen (arrows). Karnovsky, Reynolds. Bar 1 μm.

Fig. 4B. Three hour treatment. Invagination in the nucleollemma (black arrow) with three mitochondria (white arrows), Karnovsky, Reynolds. Bar 1 μm.

Fig. 4C. Three hour treatment. Numerous organelles, mitochondria with round cristae (black arrow) and electron dense plastids (empty arrows); Karnovsky, Reynolds. Bar 1 μm.

Fig. 4D. Three hour treatment. Junction of two cells with cell wall (asterisk) in the center with numerous plasmodesmata. Cell membrane is thick (double arrows). Peroxisome (thick arrow). Karnovsky, Reynolds Bar 0.5 μm.
Fig. 5A. One-hour treatment. Numerous areas of electron dense heterochromatin (arrowhead) and heterogenous nucleolus (star). Many mitochondria (white arrow) and electron dense plastids are dividing (black arrow) Karnovsky, Reynolds. Bar 1 μm.

Fig. 5B. Three-hour treatment showing froth-like structure of heterochromatin (arrow) and surrounding it dispersed euchromatin. Rough ER (short arrow). Karnovsky, Reynolds. Bar 0.5 μm

Fig. 5C. Three-hour treatment. Numerous rough ER sheets (thin black arrows) mitochondria showing areas of lighter colour in the matrix (thick arrows) Karnovsky, Reynolds. Bar 1 μm

Fig. 5D. Control with froth-like structure of heterochromatin dispersed (arrows). Karnovsky, Reynolds. Bar 1 μm.
distinct peaks of alkaloids were observed; they were higher in extracts from white than from green callus (Fig. 5B and 5C).

HPLC analysis showed that compounds from the green callus extract differed only a little from the phytochemicals in white callus, but neither of them contained the active anticancer alkaloids vinblastine and vincristine.

DISCUSSION

Two lines: white and green callus of C. roseus have been investigated. As the tissue grew rapidly on solid Gamborg medium supplemented with IAA 1 mg/l and kinetin 0.1 mg/l, this medium appeared to be convenient for starting and maintenance of callus culture.

According to the literature, callus of C. roseus can be a source of indole alkaloids. Loyola-Vargas et al. (1986) observed vinblastine and vincristine in white and green lines of three-year-old callus of C. roseus while testing the effect of various growth regulators on the induction of callus tissue.

Morris (1987) showed that two main leaf alkaloids, catharanthine and vindoline, were rapidly metabolized and were found neither in primary callus nor in the original leaf tissue after 40 days culture. The alkaloids serpentine and ajmalicine accumulated in leaf tissue but were located predominantly in callus.

The callus of C. roseus initiated on Murashige-Skoog medium supplemented with naphthaleneacetic acid (NAA) and kinetin, and growing in the dark (Miura et al. 1987), contained vinblastine, whose presence was confirmed by high performance liquid chromatography and mass spectrometry. Marfori et al. (1993) also found the alkaloids in the eight callus lines of C. roseus.

In our work, indole alkaloids used as standard substances: yohimbine, ajmalicine, vindoline, catharanthine, serpentine and vinblastine (important for the pharmacy) have not been found in alkaloid fractions, from white and green lines of callus of C. roseus. However, we observed other unidentified peaks on the chromatograms after HPLC separation of callus extracts (Fig. 5B and 5C). The absence of such important alkaloids may be caused by the age of the investigated tissue (96 passage – 8 years old). Our observation showed that young callus of C. roseus cultured for less than one year did not lose its ability to produce some alkaloids. In an earlier investigation Pietrosiuk (1997) determined the presence of ajmalicine in four-month-old callus extracts. This observation was in accordance with that of Loyola-Vargas et al. (1986) who found pharmacologically active alkaloids in young callus of C. roseus.

In spite of the absence of known pharmacologically active alkaloids, the ethanolic extract of callus caused retardation of mitoses and influenced all stages of mitosis when investigated after 1 and 3 hours. This was a short enough time to ensure that the cell at the particular stage we observed had been at another stage one hour or three hours earlier, thus enabling conclusions to be drawn about the influence of the extract at a particular moment of the cell cycle. Longer periods, 12 and 24 hours of treatment, allowed considering of what had happened when synthesis and other G1, or G2 phases were influenced, as well as, the longest period of treatment affected the whole cell cycle.

After the initial shock to the chromat, which appeared to form light-coloured areas, three hours later it looked similar to the control, and even the cytoplasm was not very much vacuolized. Divisions were retarded after 3 hours and inhibited after 12 hours. Electron microscope observations revealed in-

![Graph showing mitotic index in root tips](image-url)

Fig. 6. Mitotic index in root tips of control and treated with extract from C. roseus (mean of 15 roots from 3 different onion bulbs).

![Bar graph showing phase indices](image-url)

Fig. 7. The phase index in root tips treated as Fig. 6.

(Fig. 4A). Some dividing cells after 3 hours of treatment showed lost pieces of chromosomes (Fig. 4A, arrows) micronuclei or at least an unusual shape of the nucleus with invaginations of its envelope (Fig. 4B, black arrow). Many mitochondria were observed in the vicinity of such invaginations (Fig. 4B, white arrows). Numerous plastids contained electron-dense matrix (Fig. 4C, empty arrows). Peroxysomes were oval, electron-compact and with rough surface. The plasmalemma was denser and thicker (Fig. 4D, double arrows) than in the control, and the endoplasmic reticulum (ER), mostly rough, showed a darker grey lumen ER (Fig. 5B, thick arrow). Numerous mitochondria and plastids were dividing (Fig. 5A, arrow), and the nucleus (Fig. 5A, star) and the nucleus seemed active, showing a heterogeneous structure (Fig. 5A, arrowhead; Fig. 5B, arrow) nearly like that of the control (Fig. 5D, thick arrows). Very often several sheets of rough ER were located in the vicinity of one another (Fig. 5C, arrows) and the mitochondria showed areas of lighter colour in the matrix (Fig. 5C, thick arrows).

Alkaloids of callus

Good separations of standard substances (ajmalicine, vindoline, catharanthine, serpentine, vinblastine) used for comparative studies were obtained (Fig. 5A). An isocratic elution system was employed. Under the same conditions HPLC analysis of dried C. roseus callus extracts dissolved in methanol was performed. The analysis did not reveal the above mentioned alkaloids in the investigated material. Some other dis-
tensively developed rough endoplasmic reticulum and thick invaginating cell membrane. Those facts and the existence of numerous mitochondria suggest that the cells were at an active stage of protein production with a high level of energy supply.

The inhibition of mitoses gives hope that such extracts used as antimotics would cause few chromosomal aberrations. Our observation showed that even if some extracts of C. roseus do not contain known active compounds the presence of several other compounds, even in very low concentration, could be antimotic.

So far the extracts of Catharanthus roseus callus have not been biologically investigated. The results of our study show that this tissue could be interesting for further cytological and even immunological studies.

ACKNOWLEDGEMENTS

We thank Prof. Dr. J. Kozlowski from Institute of Medicinal Plant in Poznań (Poland) for providing seeds of Catharanthus roseus and Prof. Dr. S. A. Brown for his help in preparation of this manuscript. This work was supported by a grant of the State Committee for Scientific Research No. 6 PO4B 023 10.

LITERATURE CITED

PIETROSIUK A. 1997. Wybrane alkaloidy indolowe w rodzajach organicznych i takich jak Catharanthus roseus (L.) G. Don otrzymywanych w hodowli in vitro. (Some of indole alkaloids in different organs and tissue of Catharanthus roseus (L.) G. Don obtained in in vitro culture) Ph. D. thesis prepared in Department of Biology and Pharmaceutical Botany Medical University of Warsaw.

RUSZKOWSKA J., MACIEREWICZ B., MATUSZEWSKA M., BABEL K., WROBEL J.T., (personal information). Phytochemical screening of Catharanthus roseus (L.) G. Don cultivated in Poland.

ZMIANY CYTOLOGICZNE W KOMÓRKACH MERYSTEMATYCZNYCH ALLIUM CEPA L. POD WPŁYWEM EKSTRAKTÓW ETANOLOWYCH Z TKANKI KALUSOWEJ Catharanthus roseus (L.) G. DON.

STRESZCZENIE

Badano wpływ etanolowych ekstraktów z tkanki kalusowej Catharanthus roseus (L.) G. Don na podziały komórek merystematycznych Allium cepa.

Wyhodowano dwie linie białą i zieloną kalus C. roseus na stałej pożywce Gamborga (B5) uzupełnionej IAA 1 mg/l i kinetyną 0,1 mg/l. Analiza metodą HPLC ekstraktów z kalusa wykazała obecność alkaloïdów indolowych lecz nie było wśród nich związków o znanych działaniach farmakologicznych lub ich pochodnych stosowanych w semisyntezie (winblastyna, ajmalicyna, johimbina, windolina i katarantyna).

Etanolowe ekstrakty z kalus C. roseus hamowały liczbę mitoz w komórkach korzeni Allium cepa. Krótkie (1-3 h) traktowanie powodowało stopniowe wyhamowanie aktywności mitotycznej, zwiększanie indeksu późnych profaz oraz indeksu metafaz ze skróconymi chromosomami ułożonymi w płycie równikowej albo tworzącymi neregularne układy c-metafaz. W tym samym czasie zmienna się wyraźnie procent anafaz i telofaz. Przedłużone traktowanie wierzchołków całkowicie hamowało aktywność mitotyczną zatrzymując ją całkowicie już po 12 godzinach. Podczas inkubacji struktura jader interfazowych początkowo stawała się gęsta i homogenna a później dochodziło do strefowego jej pogrubienia i wyodrębnienia chromatynowych terytoriów z wyraźnie zachowanymi duzymi jąderkami.

Obserwacje w mikroskopie elektronowym ujawniły intensywny rozwój szorstkiego retikulum endoplasmatycznego oraz pogrubienie i uwypuklenia plazmalemmy.

SŁOWA KLUCZOWE: Catharanthus roseus, kalus, alkaloïdy, aktywność mitotyczna, ultrastruktura.